List of sterile insect technique trials

Last updated

The sterile insect technique (SIT) is an environmentally friendly method for the biological control of pests using area-wide inundative release of sterile insects to reduce reproduction in a field population of the same species (IPPC, 2007). SIT technique may be applied as part of an area-wide control (integrated pest management) approach of insects of medical, veterinary, and agricultural importance. It was in 1937 when Edward Knipling proposed using sterilization to control or eradicate insect pests after observation that screwworm fly males mate repeatedly while females mate only once. He then made the hypothesis that if large numbers of sterile males could repeatedly be released into wild populations, it would eventually eliminate population reproduction and lead to eradication. [1] [2] [3]

Contents

This table is a list of sterile insect technique trials worldwide.

TargetYearLocationMethodOutcome
Tsetse fly 1944–1946 Tanzania Release of Glossina morsitans centralis into a Glossina swynnertoni populationHybrid males were sterile and the female hybrids partially sterile. 99% suppression in 26 km2 [4] [5]
Cochliomyia hominivorax 1951 United States: Sanibel Island (47 km2), Florida and China Release 39 sterile male flies per km2 per week for several weeksField evaluation pilot test. Resulted in up to 100% sterility of the egg masses, greatly reduced the wild population, incomplete eradication because of the wild fertile flies flying from the mainland. [6]
Cochliomyia hominivorax 1954 Netherlands Antilles: Curaçao (435 km2)Released 155 sterile males per km2 per week100% egg sterility after 2 generations. Evident eradication was accomplished within 14 weeks. Releases were stopped after 22 weeks. [7]
Cochliomyia hominivorax 1958–1959 United States: Florida Release 155–1160 sterile flies per km2 per weekEradication. Total cost was $11M, about 50% of the annual losses. [8]
Cochliomyia hominivorax 1962–1966 United States: Texas and western statesRelease 200–1000 sterile flies per km2 per weekDeclared eradication in Texas and New Mexico in 1964 and in the entire USA in 1966. Thereafter, the program goal changed to population containment from the initial eradication [8]
Cochliomyia hominivorax 1984–2001 Central America Sterile flies releaseDeclared eradication in Mexico, 1991, Guatemala, 1994, El Salvador 1995, Honduras 1996, Nicaragua 1999, Costa Rica 2000, Panama, 2001 [4] [8]
Cochliomyia hominivorax 1990–1992 Libya Release 40 million sterile flies per weekOperated by a joint FAO/IAEA Division. Only 6 instances of wounds infested with screwworm larvae were found in 1991, compared with more than 12000 cases in 1990. Eradication was declared in June 1992 [9]
Mexican fruit fly 1964–current United States: Southern California and Texas For eradication, release 96,000 and 61,500 sterile flies per km2 per week in CA and TX, respectivelyStarted to eradicate in CA in 1964 and to exclude in TX a decade later. Continued as containment program [4] [10]
Bactrocera tryoni 1962– Australia Released 1600 million sterile flies in 1990. For containment method, release 60,000 sterile flies per km2 for 12 weeks after catching the last wild fly.Field trials began in 1962. Population was suppressed strongly, but not eradicated because of long-range immigrants. Eradication was achieved in Western Australia in 1990. Since the mid-1990s, it has been used as containment method. [11]
Ceratitis capitata 1978– Mexico and Guatemala Produced 500 million and 3,500 million sterile flies per week in Mexico and Guatemala, respectivelyFirst large-scale fruit fly AW-IPM program using SIT. Eradication in 1982. For over 25 years, this program kept Mexico, the US, and half of Guatemala free of the pest. Genetic sexing strains were later introduced. [12] [13]
Melon fly 1972–1993 Japan Released up to 4 million sterile fly pupae per week, total 264 million during the pilot test. Total 50,000 million sterile flies were released.A pilot experiment began in 1972 and eradication was declared in 1978. An operation program started in 1984. Complete eradication achieved in 1993. [14]
Ceratitis capitata 1980s– Israel Released malesGenetic sexing strain [15]
Ceratitis capitata 1994– United States: California and Florida Release sterile males of the tsl sexing strain VIENNA 7Started as eradication program. It was successful and cost-effective and thereafter (1996) applied as a permanent preventative program in CA, FL, and Guatemala. [16] [17] [18]
Ceratitis capitata 1997– Jordan-Israel-Palestine Released genetic sexing strain VIENNA 7As population suppression rather than eradication [19]
Onion maggot 1981– Netherlands Sterile insects are provided from a private sourceThe program has not been able to expand beyond 16% of the onion production area due to free-riders. Ongoing long-term suppression program over 20 years [20]
Tsetse fly 1970–1990s Burkina Faso (3,000 km2), Nigeria (1,500 km2) and Tanzania (1,650 km2)Combination method with attractant traps and insecticidesEradication [21] [22] [23]
Tsetse fly 1990s Uganda Autosterilization of wild fliesSuppression [24]
Anopheles quadrimaculatus 1959–1960 United States: Florida Release adult males after sterilizing in pupal stage. 430,000 males over 48 wks at 2 locationsPoor competitiveness. No population reduction. [25]
Culex quinquefasciatus 1967 Myanmar: Okpo Release 5000 daily for 9 wks. Sterility from cytoplasmic incompatibility Population eliminated [26]
Culex quinquefasciatus 1969 United States: Florida Release 930,000 males over 12 wks after chemosterilization with thiotepaPopulation suppressed and eliminated partially due to the sterile males released [27]
Culex pipiens 1970 France Release hundreds of thousands over 8 wks after sterilizing with chromosome translocationPopulation reduced due to the persistent translocation [28]
Culex quinquefasciatus 1973 India: Delhi Release 300,000 sterile males daily over 14 wks, total 23 million. Sterilization with cytoplasmic incompatibility, and chromosome translocation.Population reduced due to the established sterility from cytoplasmic incompatibility and translocation. [29]
Culex quinquefasciatus 1973 India: Delhi Release total 38 million sterile males over 25 wks. Chemoterilization with thiotepa.Up to 90% sterile eggs, but no clear population suppression due to immigration [30]
Aedes aegypti 1974 Kenya: Mombasa Release 57,000 genetically modified males over 10 wks. Sterilization with chromosome translocationPartial sterility, but no long-term persistent translocation [31]
Anopheles albimanus 1972 El Salvador: Lake Apastepeque Released 4.4 million sterile males over 22 wks. Chemosterilization of genetic sexing strain pupae with bisazir.100% sterility induced in wild population. Well below detection level after 5 months. [32]
Anopheles albimanus 1977–1979 El Salvador: Pacific coastReleased 100s million males. Bisazir sterilization. Use genetic sexing strain (MACHO).Target field population was reduced by 97%, but eradication prevented by unexpected immigration. [33]
Culex tarsalis 1981 United States: California Released 85,000 males over 8 wks after sterilizing with adult irradiationAssortative mating was observed, but no population reduction. [34]
Cockchafers 1959, 1962 Switzerland Released 3,109 and 8,594 males after radiation sterilization.Field trials. The population was reduced by 80% and 100%. [35]
Boll weevil 1971–1973 United States: Mississippi Combined methods of insecticide and SITLarge pilot field experiment. Population was suppressed below detection levels in 203 of 236 fields. The remainder were close to uncontrolled area (less than 40 km). [36]
Sweetpotato weevil 1994–1999 Japan Released sterile weevils after insecticide application.Complete eradication [37]
Lepidoptera 1994 Canada: British Columbia Released irradiated codling mothsAs a population suppression method [38]
Aedes albopictus 2012 Reunion Island Semi field condition test using the sterilizing dose of 40 Gy with cesium-137 irradiatortwo-fold reduction of the wild population's fertility [39]
Aedes aegypti 2017-2018 Queensland, Australia Released >3 million males sterilized with the natural bacteria Wolbachia 80% reduction of the population in trial areas [40] [41]

See also

Related Research Articles

<span class="mw-page-title-main">Tsetse fly</span> Genus of disease-spreading insects

Tsetse are large, biting flies that inhabit much of tropical Africa. Tsetse flies include all the species in the genus Glossina, which are placed in their own family, Glossinidae. The tsetse is an obligate parasite, which lives by feeding on the blood of vertebrate animals. Tsetse has been extensively studied because of their role in transmitting disease. They have pronounced economic and public health impacts in sub-Saharan Africa as the biological vectors of trypanosomes, causing human and animal trypanosomiasis.

<span class="mw-page-title-main">Integrated pest management</span> Approach for economic control of pests

Integrated pest management (IPM), also known as integrated pest control (IPC) that integrates both chemical and non-chemical practices for economic control of pests. The UN's Food and Agriculture Organization defines IPM as "the careful consideration of all available pest control techniques and subsequent integration of appropriate measures that discourage the development of pest populations and keep pesticides and other interventions to levels that are economically justified and reduce or minimize risks to human health and the environment. IPM emphasizes the growth of a healthy crop with the least possible disruption to agro-ecosystems and encourages natural pest control mechanisms." Entomologists and ecologists have urged the adoption of IPM pest control since the 1970s. IPM is a safer pest control framework than reliance on the use of chemical pesticides, mitigating risks such as: insecticide-induced resurgence, pesticide resistance and (especially food) crop residues.

<span class="mw-page-title-main">Sterile insect technique</span> Method of biological control for insect populations

The sterile insect technique (SIT) is a method of biological insect control, whereby overwhelming numbers of sterile insects are released into the wild. The released insects are preferably male, as this is more cost-effective and the females may in some situations cause damage by laying eggs in the crop, or, in the case of mosquitoes, taking blood from humans. The sterile males compete with fertile males to mate with the females. Females that mate with a sterile male produce no offspring, thus reducing the next generation's population. Sterile insects are not self-replicating and, therefore, cannot become established in the environment. Repeated release of sterile males over low population densities can further reduce and in cases of isolation eliminate pest populations, although cost-effective control with dense target populations is subjected to population suppression prior to the release of the sterile males.

<span class="mw-page-title-main">Vector control</span> Methods to limit or eradicate the mammals, birds, insects etc. which transmit disease pathogens

Vector control is any method to limit or eradicate the mammals, birds, insects or other arthropods which transmit disease pathogens. The most frequent type of vector control is mosquito control using a variety of strategies. Several of the "neglected tropical diseases" are spread by such vectors.

<span class="mw-page-title-main">Tephritidae</span> Family of fruit flies

The Tephritidae are one of two fly families referred to as fruit flies, the other family being the Drosophilidae. The family Tephritidae does not include the biological model organisms of the genus Drosophila, which is often called the "common fruit fly". Nearly 5,000 described species of tephritid fruit fly are categorized in almost 500 genera of the Tephritidae. Description, recategorization, and genetic analyses are constantly changing the taxonomy of this family. To distinguish them from the Drosophilidae, the Tephritidae are sometimes called peacock flies, in reference to their elaborate and colorful markings. The name comes from the Greek τεφρος, tephros, meaning "ash grey". They are found in all the biogeographic realms.

<i>Bactrocera tryoni</i> Species of fly

Bactrocera tryoni, the Queensland fruit fly, is a species of fly in the family Tephritidae in the insect order Diptera. B. tryoni is native to subtropical coastal Queensland and northern New South Wales. They are active during the day, but mate at night. B. tryoni lay their eggs in fruit. The larvae then hatch and proceed to consume the fruit, causing the fruit to decay and drop prematurely. B. tryoni are responsible for an estimated $28.5 million a year in damage to Australian crops and are the most costly horticultural pest in Australia. Up to 100% of exposed fruit can be destroyed due to an infestation of this fly species. Previously, pesticides were used to eliminate B. tryoni from damaging crops. However, these chemicals are now banned. Thus, experts devoted to B. tryoni control have transitioned to studying this pests' behaviors to determine a new method of elimination.

<span class="mw-page-title-main">Edward F. Knipling</span> American entomologist

Edward Fred Knipling was an American entomologist, who along with his longtime colleague Raymond C. Bushland, received the 1992 World Food Prize for their collaborative achievements in developing the sterile insect technique for eradicating or suppressing the threat posed by pests to the livestock and crops that contribute to the world's food supply. Knipling's contributions included the parasitoid augmentation technique, insect control methods involving the medication of the hosts, and various models of total insect population management. Knipling was best known as the inventor of the sterile insect technique (SIT), an autocidal theory of total insect population management. The New York Times Magazine proclaimed on January 11, 1970, that "Knipling...has been credited by some scientists as having come up with 'the single most original thought in the 20th century.'"

<i>Ceratitis capitata</i> Species of insect

Ceratitis capitata, commonly known as the Mediterranean fruit fly or medfly, is a yellow-and-brown fly native to sub-Saharan Africa. It has no near relatives in the Western Hemisphere and is considered to be one of the most destructive fruit pests in the world. There have been occasional medfly infestations in California, Florida, and Texas that require extensive eradication efforts to prevent the fly from establishing itself in the United States.

<i>Cochliomyia hominivorax</i> Species of fly

Cochliomyia hominivorax, the New World screwworm fly, or simply screwworm or screw-worm, is a species of parasitic fly that is well known for the way in which its larvae (maggots) eat the living tissue of warm-blooded animals. It is present in the New World tropics. Of the five species of Cochliomyia, only one species of screwworm fly in the genus is parasitic; also, a single Old World species is placed in a different genus. Infestation of a live vertebrate animal by a maggot is technically called myiasis. While the maggots of many fly species eat dead flesh, and may occasionally infest an old and putrid wound, screwworm maggots are unusual because they attack healthy tissue.

<i>Bactrocera dorsalis</i> Species of insect

Bactrocera dorsalis, previously known as Dacus dorsalis and commonly referred to as the oriental fruit fly, is a species of tephritid fruit fly that is endemic to Southeast Asia. It is one of the major pest species in the genus Bactrocera with a broad host range of cultivated and wild fruits. Male B. dorsalis respond strongly to methyl eugenol, which is used to monitor and estimate populations, as well as to annihilate males as a form of pest control. They are also important pollinators and visitors of wild orchids, Bulbophyllum cheiri and Bulbophyllum vinaceum in Southeast Asia, which lure the flies using methyl eugenol.

<span class="mw-page-title-main">Tephritid Workers Database</span>

The Tephritid Workers Database is a web-based database for sharing information on tephritid fruit flies. Because these species are one of the most economically important group of insect species that threaten fruit and vegetable production and trade worldwide, a tremendous amount of information is made available each year: new technologies developed, new information on their biology and ecology; new control methods made available, new species identified, new outbreaks recorded and new operational control programmes launched. The TWD allows workers to keep up-to-date on the most recent developments and provides an easily accessible and always available resource.

<i>Cochliomyia</i> Genus of insects

Cochliomyia is a genus in the family Calliphoridae, known as blowflies, in the order Diptera. Cochliomyia is commonly referred to as the New World screwworm flies, as distinct from Old World screwworm flies. Four species are in this genus: C. macellaria, C. hominivorax, C. aldrichi, and C. minima. C. hominivorax is known as the primary screwworm because its larvae produce myiasis and feed on living tissue. This feeding causes deep, pocket-like lesions in the skin, which can be very damaging to the animal host. C. macellaria is known as the secondary screwworm because its larvae produce myiasis, but feed only on necrotic tissue. Both C. hominivorax and C. macellaria thrive in warm, tropical areas.

<i>Bactrocera cucurbitae</i> Species of fly

Bactrocera cucurbitae, the melon fly, is a fruit fly of the family Tephritidae. It is a serious agricultural pest, particularly in Hawaii.

<i>Chrysomya bezziana</i> Species of fly

Chrysomya bezziana, also known as the Old World screwworm fly or screwworm, is an obligate parasite of mammals. Obligate parasitic flies require a host to complete their development. Named to honor the Italian entomologist Mario Bezzi, this fly is widely distributed in Asia, tropical Africa, India, and Papua New Guinea. The adult can be identified as metallic green or blue with a yellow face and the larvae are smooth, lacking any obvious body processes except on the last segment.

<span class="mw-page-title-main">Genetically modified insect</span> Insect that has been genetically modified

A genetically modified (GM) insect is an insect that has been genetically modified, either through mutagenesis, or more precise processes of transgenesis, or cisgenesis. Motivations for using GM insects include biological research purposes and genetic pest management. Genetic pest management capitalizes on recent advances in biotechnology and the growing repertoire of sequenced genomes in order to control pest populations, including insects. Insect genomes can be found in genetic databases such as NCBI, and databases more specific to insects such as FlyBase, VectorBase, and BeetleBase. There is an ongoing initiative started in 2011 to sequence the genomes of 5,000 insects and other arthropods called the i5k. Some Lepidoptera have been genetically modified in nature by the wasp bracovirus.

Inherited sterility in insects is induced by substerilizing doses of ionizing radiation. When partially sterile males mate with wild females, the radiation-induced deleterious effects are inherited by the F1 generation. As a result, egg hatch is reduced and the resulting offspring are both highly sterile and predominately male. Compared with the high radiation required to achieve full sterility in Lepidoptera, the lower dose of radiation used to induce F1 sterility increases the quality and competitiveness of the released insects as measured by improved dispersal after release, increased mating ability, and superior sperm competition.

<i>Anastrepha ludens</i> Species of fly

Anastrepha ludens, the Mexican fruit fly or Mexfly, is a species of fly of the Anastrepha genus in the Tephritidae family. It is closely related to the Caribbean fruit fly Anastrepha suspensa, and the papaya fruit fly Anastrepha curvicauda.

<span class="mw-page-title-main">Agenor Mafra-Neto</span> American chemical ecology researcher (born 1964)

Agenor Mafra-Neto is a chemical ecology researcher and entrepreneur in the entomological field of insect chemical ecology. He is the CEO of ISCA Technologies, a company specializing in the development semiochemical solutions for pest management, robotic smart traps and nanosensors. Dr Mafra-Neto is the CEO and Director of Research and Development at ISCA Technologies, Inc. which he founded in 1996 in Riverside, California. ISCA Tecnologias, Ltda was founded in Brazil in 1997.

<span class="mw-page-title-main">Parasitic flies of domestic animals</span> Overview of parasite-transmitting flies

Many species of flies of the two-winged type, Order Diptera, such as mosquitoes, horse-flies, blow-flies and warble-flies, cause direct parasitic disease to domestic animals, and transmit organisms that cause diseases. These infestations and infections cause distress to companion animals, and in livestock industry the financial costs of these diseases are high. These problems occur wherever domestic animals are reared. This article provides an overview of parasitic flies from a veterinary perspective, with emphasis on the disease-causing relationships between these flies and their host animals. The article is organized following the taxonomic hierarchy of these flies in the phylum Arthropoda, order Insecta. Families and genera of dipteran flies are emphasized rather than many individual species. Disease caused by the feeding activity of the flies is described here under parasitic disease. Disease caused by small pathogenic organisms that pass from the flies to domestic animals is described here under transmitted organisms; prominent examples are provided from the many species.

Walther Raúl Enkerlin Hoeflich is a Mexican entomologist, advocate, and pioneer researcher of the economics of applied sterile insect technique (SIT), currently based at the Joint Food and Agriculture Organization (FOA) and International Atomic Energy Agency (IAEA) Division.

References

  1. Knipling, E.F. 1955. Possibilities of insect control or eradication through the use of sexually sterile males. J. Econ. Entomol., 48: 459–462.
  2. Knipling, E.F. 1979. The basic principles of insect population and suppression and management. USDA handbook. Washington, D.C., USDA.
  3. Knipling, E.F. 1985. Sterile insect technique as a screwworm control measure: the concept and its development. Symposium on eradication of the screwworm from the United States and Mexico. Misc. Pub. Entomol. Soc. Am., 62: 4–7.
  4. 1 2 3 Klassen, W., C. F. Curtis. 2005. History of the sterile insect technique, pp. 3–36 In V. A. Dyck, J. Hendrichs, and A. S. Robinson. The Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management. Springer, Dordrecht, The Netherlands. 787 pp.
  5. Vanderplank, F. L. 1947. Experiments in the hybridization of tsetse flies ("Glossina Diptera") and the possibility of a new method of control. Transactions of the Royal Entomological Society (London) 98: 1–18.
  6. Bushland, R. C., 1960. Male sterilization for the control of insects., pp. 1–25. In R. L. Metcalf (ed.), Advances in pest control research, Vol. III, Interscience Publishers. New York, NY, USA.
  7. Baumhover, A. H., Graham, A. J., Bitter, B. A., Hopkins, D. E., New, W. D., Dudley, F. H., and Bushland, R. C., 1955, Screw-worm control through release of sterile flies. J. Econ. Entomol., 48, 462–466.
  8. 1 2 3 New World Screwworm eradication
  9. Food and Agriculture Organization of the United Nations. 1992. The New World screwworm eradication programme. North Africa 1988–1992. FAO. Rome, Italy.
  10. Mexican fruit fly program in CA and TX
  11. Fisher, K. 1996. Queensland fruit fly (Bactrocera tryoni): eradication from Western Australia, pp. 535– 541. In B. A. McPheron and G. J. Steck (eds.), Fruit fly pests. A world assessment of their biology and management. St. Lucie Press, Delray Beach, FL, USA.
  12. Hendrichs, J., G. Ortiz, P. Liedo, and A. Schwarz. 1983. Six years of successful medfly program in Mexico and Guatemala, pp 353–365. In R. Cavalloro (ed.), Proceedings, Symposium: Fruit Flies of Economic Importance. CEC/IOBC International Symposium, 16–19 November 1982, Athens, Greece. A. A. Balkema, Rotterdam, The Netherlands.
  13. Villaseñor, A., J. Carrillo, J. Zavala, J. Stewart, C. Lira, and J. Reyes. 2000. Current progress in the medfly program Mexico-Guatemala, pp. 361–368. In K. H. Tan (ed.), Proceedings: Area-Wide Control of Fruit Flies and Other Insect Pests. International Conference on Area-Wide Control of Insect Pests, and the 5th International Symposium on Fruit Flies of Economic Importance, 28 May–5 June 1998, Penang, Malaysia. Penerbit Universiti Sains Malaysia, Pulau Pinang, Malaysia.
  14. Yosiaki ITO, Hiroyuki Kakinohana, Masaaki Yamagishi, Tsuguo Kohama, 2003, Eradication of the Melon Fly, Bactrocera cucurbitae, from Okinawa, Japan, by Means of the Sterile Insect Technique, with Special Emphasis on the Role of Basic Studies, Journal of Asia-Pacific Entomology Volume 6, Issue 2, November 2003, Pages 119–129.
  15. Nitzan, Y., Y. Rössler, and A. P. Economopoulos. 1990. Field testing of "genetic sexing strain" for all-male releases in SIT projects. Report, Research Coordination Meeting. International Atomic Energy Agency, Vienna, Austria.
  16. Dowell, R. V., I. A. Siddiqui, F. Meyer, and E. L. Spaugy. 2000. Mediterranean fruit fly preventative release programme in southern California, pp. 369–375. In K. H. Tan (ed.), Proceedings: Area-Wide Control of Fruit Flies and Other Insect Pests. International Conference on Area-Wide Control of Insect Pests, and the 5th International Symposium on Fruit Flies of Economic Importance, 28 May–5 June 1998, Penang, Malaysia. Penerbit Universiti Sains Malaysia, Pulau Pinang, Malaysia.
  17. Barry J. D.; Blessinger T.; Morse J. G. (2004). "Recapture of sterile Mediterranean fruit flies (Diptera: Tephritidae) in California's preventative release program". Journal of Economic Entomology. 97 (5): 1554–1562. doi:10.1603/0022-0493-97.5.1554. PMID   15568343. S2CID   16084042.
  18. Caceres, C., J. P. Cayol, W. R. Enkerlin, G. Franz, J. Hendrichs, and A. S. Robinson. 2004. Comparison of Mediterranean fruit fly (Ceratitis capitata) (Tephritidae) bisexual and genetic sexing strains: development, evaluation and economics, pp. 367–381. In B. N. Barnes (ed.), Proceedings, Symposium: 6th International Symposium on Fruit Flies of Economic Importance, 6–10 May 2002, Stellenbosch, South Africa. Isteg Scientific Publications, Irene, South Africa.
  19. Cayol, J. P., Y. Rössler, M. Weiss, M. Bahdousheh, M. Oman, M. Hamalawi, and A. Almughayyar. 2004. Fruit fly control and monitoring in the Near East: shared concern in a regional transboundary problem, pp. 155–171. In B. N. Barnes (ed.), Proceedings, Symposium: 6th International Symposium on Fruit Flies of Economic Importance, 6–10 May 2002, Stellenbosch, South Africa. Isteg Scientific Publications, Irene, South Africa.
  20. Loosjes, M. 2000. The sterile insect technique for commercial control of the onion fly, pp. 181–184. In K. H. Tan (ed.), Proceedings: Area-Wide Control of Fruit Flies and Other Insect Pests. International Conference on Area-Wide Control of Insect Pests, and the 5th International Symposium on Fruit Flies of Economic Importance, 28 May–5 June 1998, Penang, Malaysia. Penerbit Universiti Sains Malaysia, Pulau Pinang, Malaysia.
  21. Politzar, H., and D. Cuisance. 1984. An integrated campaign against riverine tsetse, Glossina palpalis gambiensis and Glossina tachinoides by trapping and the release of sterile males. Insect Science and its Application 5: 439–442.
  22. Takken, W., M. A. Oladunmade, L. Dengwat, H. U. Feldmann, J. A. Onah, S. O. Tenabe, and H. J. Hamann. 1986. The eradication of Glossina palpalis palpalis (Robineau-Desvoidy) (Diptera: Glossinidae) using traps, insecticide-impregnated targets and the sterile insect technique in central Nigeria. Bulletin of Entomological Research 76: 275–286.
  23. Msangi, A. R., K. M. Saleh, N. Kiwia, I. I. Malele, W. A. Mussa, F. Mramba, K. G. Juma, V. A. Dyck, M. J. B. Vreysen, A. G. Parker, U. Feldmann, Z. R. Zhu, and H. Pan. 2000. Success in Zanzibar: eradication of tsetse, pp. 57–66. In K. H. Tan (ed.), Proceedings: Area-Wide Control of Fruit Flies and Other Insect Pests. International Conference on Area-Wide Control of Insect Pests, and the 5th International Symposium on Fruit Flies of Economic Importance, 28 May–5 June 1998, Penang, Malaysia. Penerbit Universiti Sains Malaysia, Pulau Pinang, Malaysia.
  24. Oloo, F. P., P. A. Langley, F. Luyimbazi, and L. M. Ogwal. 2000. Integration of the sterile insect technique (SIT) and autosterilisation lethality in the eradication of Glossina fuscipes fuscipes Newst. (Diptera: Glossinidae) in Buvuma Islands in Lake Victoria, Uganda, pp. 311–314. In K. H. Tan (ed.), Proceedings: Area-Wide Control of Fruit Flies and Other Insect Pests. International Conference on Area-Wide Control of Insect Pests, and the 5th International Symposium on Fruit Flies of Economic Importance, 28 May–5 June 1998, Penang, Malaysia. Penerbit Universiti Sains Malaysia, Pulau Pinang, Malaysia.
  25. Dame, D. A., D. B. Woodward, H. R. Ford, and D. E. Weidhaas. 1964. Field behavior of sexually sterile Anopheles quadrimaculatus males. Mosquito News 24: 6–16.
  26. Laven, H. (1967). "Eradication of Culex pipiens fatigans through cytoplasmic incompatibility". Nature . 216 (5113): 383–384. Bibcode:1967Natur.216..383L. doi:10.1038/216383a0. PMID   4228275. S2CID   36662629.
  27. Patterson, R. S., D. E. Weidhaas, H. R. Ford & C. S. Lofgren (1970). "Suppression and elimination of an island population of Culex quinquefasciatus with sterile males" (PDF). Science . 168 (3937): 1368–1370. doi:10.1126/science.168.3937.1368. PMID   4986308. S2CID   42721469.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  28. Laven, H., J. Cousserans, and G. Guille. 1972. Expérience de lutte génetique contra Culex pipiens dans la région de Montpellier. Bulletin Biologique de la France et de la Belgique 105: 357–367. Cousserans, J., and G. Guille. 1974. Expérience de lutte génétique contre Culex pipiens dans la region de Montpellier. Synthèse de quatre années d’observations. Bulletin Biologique de la France et de la Belgique 108: 253–257.
  29. Curtis, C. F., G. D. Brookes, K. K. Grover, B. S. Krishnamurthy, H. Laven, P. K. Rajagopalan, L. S. Sharma, V. P. Sharma, D. Singh, K. R. P. Singh, M. Yasuno, M. A. Ansari, T. Adak, H. V. Agarwal, C. P. Batra, R. K. Chandrahas, P. R. Malhotra, P. K. B. Menon, S. Das, R. K. Razdan, and V. Vaidanyanathan. 1982. A field trial on genetic control of Culex p. fatigans by release of the integrated strain IS-31B. Entomologia Experimentalis et Applicata 31: 181–190.
  30. Yasuno, M., W. W. Macdonald, C. F. Curtis, K. K. Grover, P. K. Rajagopalan, L. S. Sharma, V. P. Sharma, D. Singh, K. R. P. Singh, H. V. Agarwal, S. J. Kazmi, P. K. B. Menon, R. K. Razdan, D. Samuel, and V. Vaidanyanthan. 1978. A control experiment with chemosterilised male Culex pipiens fatigans in a village near Delhi surrounded by a breeding-free zone. Japanese Journal of Sanitary Zoology 29: 325–343.
  31. McDonald P. T.; Hausermann W.; Lorimer N. (1977). "Sterility introduced by release of genetically altered males to a domestic population of Aedes aegypti at the Kenya coast". American Journal of Tropical Medicine and Hygiene. 26 (3): 553–561. doi:10.4269/ajtmh.1977.26.553. PMID   869107.
  32. Lofgren C. S.; Dame D. A.; Breeland S. G.; Weidhaas D. E.; Jeffery G.; Kaiser R.; Ford R.; Boston M. D.; Baldwin K.; et al. (1974). "Release of chemosterilized males for the control of Anopheles albimanus in El Salvador. III. Field methods and population control". American Journal of Tropical Medicine and Hygiene. 23 (2): 288–297. doi:10.4269/ajtmh.1974.23.288. PMID   4817674.
  33. Dame, D. A., R. E. Lowe, and D. W. Williamson. 1981. Assessment of released sterile Anopheles albimanus and Glossina morsitans morsitans, pp. 231–248. In R. Pal, J. B. Kitzmiller and T. Kanda (eds.), Cytogenetics and genetics of vectors. Proceedings of XVI International Congress of Entomology, Kyoto, Japan. Elsevier Science Publishers, Amsterdam, the Netherlands.
  34. Reisen, W. K., M. M. Milby, S. M. Asman, M. E. Bock, R. P. Meyer, P. T. McDonald, and W. C. Reeves. 1982. Attempted suppression of a semi-isolated Culex tarsalis population by the release of irradiated males: a second experiment using males from a recently colonized strain. Mosquito News 42: 565–575.
  35. Horber, E. 1963. Eradication of the white grub (Melolontha vulgaris F.) by the sterile male technique, pp. 313–332. In Proceedings, Symposium: Radiation and Radioisotopes Applied to Insects of Agricultural Importance. FAO/IAEA, 22–26 April 1963, Athens, Greece. STI/PUB/74. IAEA, Vienna, Austria.
  36. Klassen, W. 1989. Eradication of introduced arthropod pests: theory and historical practice. Miscellaneous Publications of the Entomological Society of America 73: 1–29.
  37. Kohama, T., M. Yamagishi, H. Kuba, and K. Kinjo. 2003. A progress report on the eradication program of the sweet potato weevil, Cylas formicarius (Fabricius) (Coleoptera: Brentidae), with both male annihilation using sex pheromone and sterile insect releases in Kume Island, Okinawa, Japan, pp. 65–69. In Recent trends on sterile insect technique and area-wide integrated pest management – economic feasibility, control projects, farmer organization and Bactrocera dorsalis complex control study. Research Institute for Subtropics, Okinawa, Japan.
  38. Bloem, K. A., and S. Bloem. 2000. SIT for codling moth eradication in British Columbia, Canada, pp. 207–214. In K. H. Tan (ed.), Proceedings: Area-Wide Control of Fruit Flies and Other Insect Pests. International Conference on Area-Wide Control of Insect Pests, and the 5th International Symposium on Fruit Flies of Economic Importance, 28 May–5 June 1998, Penang, Malaysia. Penerbit Universiti Sains Malaysia, Pulau Pinang, Malaysia.
  39. Oliva CF, Jacquet M, Gilles J, Lemperiere G, Maquart PO, et al. (2012). "The Sterile Insect Technique for Controlling Populations of Aedes albopictus (Diptera: Culicidae) on Reunion Island: Mating Vigour of Sterilized Males". PLoS ONE . 7 (11): e49414. Bibcode:2012PLoSO...749414O. doi: 10.1371/journal.pone.0049414 . PMC   3504010 . PMID   23185329.
  40. "Trial wipes out more than 80 per cent of disease-spreading mozzie". 10 July 2018. Retrieved 11 July 2018.
  41. Yeung, Jessie (10 July 2018). "Australian experiment wipes out over 80% of disease-carrying mosquitoes". CNN. Retrieved 11 July 2018.