Logarithmic timeline

Last updated

A logarithmic timeline is a timeline laid out according to a logarithmic scale. This necessarily implies a zero point and an infinity point, neither of which can be displayed. The most natural zero point is the Big Bang, looking forward, but the most common is the ever-changing present, looking backward. (Also possible is a zero point in the present, looking forward to the infinite future.)

Contents

The idea of presenting history logarithmically goes back at least to 1932, when John B. Sparks copyrighted his chart "Histomap of Evolution". [1] Around the same time it was also explored by the cyberneticist Heinz von Foerster, who used it to propose that memories naturally fade in an exponential manner. Logarithmic timelines have also been used in futures studies to justify the idea of a technological singularity.

A logarithmic scale enables events throughout time to be presented accurately, but it also enables more events to be included closer to one end. Sparks explained this by stating:

As we travel forward in geological time the more complex is the evolution of life forms and the more are the changes to be recorded. Further, the most recent periods of evolution hold the most interest for us. We need therefore increasingly more space for our outline the nearer we approach modern times, and the logarithmic scale fulfills just this condition without any break in the continuity.

Two examples of such timelines are shown below, while a more comprehensive version (similar to that of Sparks' "Histomap") can be found at Detailed logarithmic timeline.

Example of a forward-looking logarithmic timeline

In this table each row is defined in seconds after the Big Bang, with the earliest at the top of the chart. (see Cosmological decade)

Seconds after Big Bang Period
10−45 to 10−40 Planck epoch
10−40 to 10−35
10−35 to 10−30 Grand unification epoch
10−30 to 10−25
10−25 to 10−20
10−20 to 10−15
10−15 to 10−10 Electroweak epoch
10−10 to 10−5
10−5 to 100 Hadron epoch
100 to 105 Lepton epoch
105 to 1010Epoch of Nucleosynthesis
1010 to 1015Epoch of Galaxies
1015 to 1020

The present time is approximately 4.3×1017 seconds after the Big Bang; the Sun and Earth formed about 2×1017 seconds after the Big Bang. 1020 seconds is 3 trillion years (3×1012 years) in the future.

Example of a backward-looking logarithmic timeline

In this table, each row is defined in years ago, that is, years before the present date, with the most recent at the top of the chart. Each event is an occurrence of an observed or inferred process. (Note that the logarithmic scale never actually gets to zero.)

Years ago Period Event, invention or historical development
10−3 to 10−2last 3 daysSee, for example, the content of Today's events, Yesterday's and the day before.
10−2 to 10−1last 36 daysSee, for example, the content in Portal:Current events
10−1 to 100last yearSee, for example, Events in 2023
100 to 1012012 onwardInternet, biotechnology, nanotechnology, global warming, more...
101 to 10220th century Car to spacecraft, nuclear power, antibiotics, electronics, totalitarianism, world wars, more...
102 to 103 1000 to 1900 Renaissance, printing press, Industrial Revolution, colonialism, firearms, steam engine, more...
103 to 104Start of Holocene, 8000 BCE to CE 1000, Neolithic, Bronze Age, Iron Age Cities, empires, writing, wheel, civilization, religions, philosophy, more...
104 to 105 Pleistocene ends, Paleolithic ends, Mesolithic, beginning of Neolithic Ice Age, music, art, cave paintings, dance, tally stick, medicine, Neandertal extinction, Flores Man extinction, advanced Homo erectus sub-species extinction, Ice Age ends, domesticationagriculture and animal husbandry
105 to 106Pleistocene, PaleolithicHumans (150 kya), language, spirituality
106 to 107 Pliocene, Paleolithic begins, Lower Paleolithic hunting-gathering, tools, fire
107 to 108Late Cretaceous, Cenozoic Grasses, mammals, Cretaceous–Paleogene extinction event
108 to 109 Paleozoic, Mesozoic Cambrian explosion of life, animals, flowering plants, Permian–Triassic extinction event
109 to 1.4×1010 Precambrian, cosmology Big Bang, Galaxy formation and evolution, Earth, life

See also

Related Research Articles

<span class="mw-page-title-main">Big Bang</span> How the universe expanded from a hot, dense state

The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. The Big Bang theory was inspired by the discovery of the expanding Universe by Edwin Hubble. It was first proposed in 1927 by Roman Catholic priest and physicist Georges Lemaître. Lemaître reasoned that if we go back in time, there must be fewer and fewer matter, until all the energy of the universe is packed in a unique quantum. Various cosmological models of the Big Bang explain the evolution of the observable universe from the earliest known periods through its subsequent large-scale form. These models offer a comprehensive explanation for a broad range of observed phenomena, including the abundance of light elements, the cosmic microwave background (CMB) radiation, and large-scale structure. The overall uniformity of the universe, known as the flatness problem, is explained through cosmic inflation: a sudden and very rapid expansion of space during the earliest moments. However, physics currently lacks a widely accepted theory of quantum gravity that can successfully model the earliest conditions of the Big Bang.

<span class="mw-page-title-main">Physical cosmology</span> Branch of cosmology which studies mathematical models of the universe

Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of fundamental questions about its origin, structure, evolution, and ultimate fate. Cosmology as a science originated with the Copernican principle, which implies that celestial bodies obey identical physical laws to those on Earth, and Newtonian mechanics, which first allowed those physical laws to be understood.

<span class="mw-page-title-main">Universe</span> Everything in space and time

The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of energy and matter, and the structures they form, from sub-atomic particles to entire galaxies. Space and time, according to the prevailing cosmological theory of the Big Bang, emerged together 13.787±0.020 billion years ago, and the universe has been expanding ever since. Today the universe has expanded into an age and size that is physically only in parts observable as the observable universe, which is approximately 93 billion light-years in diameter at the present day, while the spatial size, if any, of the entire universe is unknown.

The ultimate fate of the universe is a topic in physical cosmology, whose theoretical restrictions allow possible scenarios for the evolution and ultimate fate of the universe to be described and evaluated. Based on available observational evidence, deciding the fate and evolution of the universe has become a valid cosmological question, being beyond the mostly untestable constraints of mythological or theological beliefs. Several possible futures have been predicted by different scientific hypotheses, including that the universe might have existed for a finite and infinite duration, or towards explaining the manner and circumstances of its beginning.

In physical cosmology, the Big Rip is a hypothetical cosmological model concerning the ultimate fate of the universe, in which the matter of the universe, from stars and galaxies to atoms and subatomic particles, and even spacetime itself, is progressively torn apart by the expansion of the universe at a certain time in the future, until distances between particles will infinitely increase. According to the standard model of cosmology, the scale factor of the universe is accelerating, and, in the future era of cosmological constant dominance, will increase exponentially. However, this expansion is similar for every moment of time, and is characterized by an unchanging, small Hubble constant, effectively ignored by any bound material structures. By contrast, in the Big Rip scenario the Hubble constant increases to infinity in a finite time.

<span class="mw-page-title-main">Big Crunch</span> Theoretical scenario for the ultimate fate of the universe

The Big Crunch is a hypothetical scenario for the ultimate fate of the universe, in which the expansion of the universe eventually reverses and the universe recollapses, ultimately causing the cosmic scale factor to reach zero, an event potentially followed by a reformation of the universe starting with another Big Bang. The vast majority of evidence indicates that this hypothesis is not correct. Instead, astronomical observations show that the expansion of the universe is accelerating rather than being slowed by gravity, suggesting that a Big Chill is more likely. However, there are new theories that suggest that a "Big Crunch-style" event could happen by the way of a dark energy fluctuation; however, this is still being debated amongst scientists.

The Big Bounce hypothesis is a cosmological model for the origin of the known universe. It was originally suggested as a phase of the cyclic model or oscillatory universe interpretation of the Big Bang, where the first cosmological event was the result of the collapse of a previous universe. It receded from serious consideration in the early 1980s after inflation theory emerged as a solution to the horizon problem, which had arisen from advances in observations revealing the large-scale structure of the universe.

In physical cosmology, the age of the universe is the time elapsed since the Big Bang. Astronomers have derived two different measurements of the age of the universe: a measurement based on direct observations of an early state of the universe, which indicate an age of 13.787±0.020 billion years as interpreted with the Lambda-CDM concordance model as of 2021; and a measurement based on the observations of the local, modern universe, which suggest a younger age. The uncertainty of the first kind of measurement has been narrowed down to 20 million years, based on a number of studies that all show similar figures for the age. These studies include researches of the microwave background radiation by the Planck spacecraft, the Wilkinson Microwave Anisotropy Probe and other space probes. Measurements of the cosmic background radiation give the cooling time of the universe since the Big Bang, and measurements of the expansion rate of the universe can be used to calculate its approximate age by extrapolating backwards in time. The range of the estimate is also within the range of the estimate for the oldest observed star in the universe.

The expansion of the universe is parametrized by a dimensionless scale factor. Also known as the cosmic scale factor or sometimes the Robertson Walker scale factor, this is a key parameter of the Friedmann equations.

A cosmological decade () is a division of the lifetime of the cosmos. The divisions are logarithmic in size, with base 10. Each successive cosmological decade represents a ten-fold increase in the total age of the universe.

This more than 20-billion-year timeline of our universe shows the best estimates of major events from the universe's beginning to anticipated future events. Zero on the scale is the present day. A large step on the scale is one billion years; a small step, one hundred million years. The past is denoted by a minus sign: e.g., the oldest rock on Earth was formed about four billion years ago and this is marked at -4e+09 years, where 4e+09 represents 4 times 10 to the power of 9. The "Big Bang" event most likely happened 13.8 billion years ago; see age of the universe.

In futures studies and the history of technology, accelerating change is the observed exponential nature of the rate of technological change in recent history, which may suggest faster and more profound change in the future and may or may not be accompanied by equally profound social and cultural change.

<span class="mw-page-title-main">History of the Big Bang theory</span> History of a cosmological theory

The history of the Big Bang theory began with the Big Bang's development from observations and theoretical considerations. Much of the theoretical work in cosmology now involves extensions and refinements to the basic Big Bang model. The theory itself was originally formalised by Father Georges Lemaître in 1927. Hubble's Law of the expansion of the universe provided foundational support for the theory.

The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion; the universe does not expand "into" anything and does not require space to exist "outside" it. To any observer in the universe, it appears that all but the nearest galaxies recede at speeds that are proportional to their distance from the observer, on average. While objects cannot move faster than light, this limitation only applies with respect to local reference frames and does not limit the recession rates of cosmologically distant objects.

This is the timeline of the stelliferous era but also partly charts the primordial era, and charts more of the degenerate era of the heat death scenario.

This is the timeline of the Universe from Big Bang to Heat Death scenario. The different eras of the universe are shown. The heat death will occur in around 1.7×10106 years, if protons decay.

<span class="mw-page-title-main">Cosmic Calendar</span> Method to visualize the chronology of the universe

The Cosmic Calendar is a method to visualize the chronology of the universe, scaling its currently understood age of 13.8 billion years to a single year in order to help intuit it for pedagogical purposes in science education or popular science.

Cosmic time, or cosmological time, is the time coordinate commonly used in the Big Bang models of physical cosmology. Such time coordinate may be defined for a homogeneous, expanding universe so that the universe has the same density everywhere at each moment in time. The clocks measuring cosmic time should move along the Hubble flow.

Current observations suggest that the expansion of the universe will continue forever. The prevailing theory is that the universe will cool as it expands, eventually becoming too cold to sustain life. For this reason, this future scenario once popularly called "Heat Death" is now known as the "Big Chill" or "Big Freeze".

The chronology of the universe describes the history and future of the universe according to Big Bang cosmology.

References

  1. Onion, Rebecca. "The Entire History of the World—Really, All of It—Distilled into a Single Gorgeous Chart". The Vault. Slate. Archived from the original on 15 September 2013. Retrieved 5 September 2013.