Louis Lliboutry

Last updated
Louis Lliboutry
Llib p68.jpg
On top of Cerro Polo, facing Fitz Roy
Born
Louis Antonin François Lliboutry

(1922-02-19)19 February 1922
Died21 October 2007(2007-10-21) (aged 85)
NationalityFrench
Alma mater École Normale Supérieure
Known forFounder and director of the Laboratory of Alpine Glaciology (Grenoble)
SpouseClaude Micanel (1929-2017)
ChildrenEmmanuel and Olivier
Awards Seligman Crystal of the International Glaciological Society 1993
Scientific career
Fields Glaciology and Geodynamics
Institutions University of Chile, Santiago and Joseph Fourier University, Grenoble, France
Thesis L'aimantation des aciers dans les champs magnétiques faibles : effets des tensions, des chocs, des champs magnétiques transversaux (1950)
Doctoral advisor Louis Néel

Louis Lliboutry (born 19 February 1922 in Madrid; died on 21 October 2007 in Grenoble) was a French glaciologist, geophysicist, and mountaineer. While in Chile in the early 1950s, he analysed and explained the formation of snow penitents in the Andes, which marked his first contribution to glaciology. He founded in Grenoble in 1958 the Laboratory of Alpine Glaciology and headed it for 25 years; he also set up at that period a pioneering syllabus in geophysics. His contributions to mechanics of viscous media (such as ice and the Earth's mantle) and to geodynamics are internationally acknowledged.

Contents

Biography

Early years

Louis Antonin François Lliboutry was born in Madrid on 19 February 1922, the son of French parents originating from the Perpignan region. Repatriated in 1936 during the Spanish Civil War, he soon revealed his interest for research and exploration, instilled by Jules Verne's novels, while Jean-Henri Fabre's Souvenirs entomologiques led him to observe and collect insects. He also remembers his early passion for Meccano, which perhaps explains why he later became a researcher in mechanics. [1]

After high-school studies in Perpignan and Montpellier, he entered during the German Occupation the École Normale Supérieure, a French grande école in Paris. In April 1945 he passed an agrégation in physics where he tied for third place. Louis Néel, later a Nobel laureate in physics, proposed to Lliboutry a position of teaching assistant in his laboratory in Grenoble. While preparing there his doctorat d'État, Lliboutry discovered mountaineering and climbed many peaks in the Savoy and Dauphiné Alps. He recalls it was in August 1945, during a stay at the "École de haute montagne" (Mountaineering School) in Chamonix, that he first cut steps in the ice of the Bossons Glacier and he realized he was ″climbing on water″. [1]

In June 1950 he defended his thesis on the variations in magnetization of a steel bar under shocks and strain. Néel acknowledges him as a peerless collaborator, ″inventive, bright, slightly temperamental″. [2] However Lliboutry could not see himself flourishing in his former patron's laboratory, and he avows he came within an ace of renouncing an academic career. Through the French Ministry of Foreign Affairs, he managed to get a several-years' temporary leave to train high-school teachers at the University of Chile. He took up his duties in Santiago in March 1951. [1]

Andean years

He soon contacted the Club alpin français which was at that time preparing an expedition to the Fitz Roy (3,405 metres (11,171 ft)), a still unconquered Argentine summit in the Patagonian Andes. As the scientist of the expedition, he had twice the opportunity to meet Juan Perón at the Casa Rosada: for logistics when they headed south, and for a decoration when they returned. While staying at the base camp, he made a new topographic survey of the surrounding area, then poorly mapped on Argentine documents which showed very approximate elevations. He climbed twice to Camp III, 400 metres (1,300 ft) below the summit, which was reached by Lionel Terray and Guido Magnone in February 1952 after more than a month's approach and waiting. [3]

Penitents above Rio Blanco, in Argentina. Penitentes Upper Rio Blanco Argentine.jpg
Penitents above Río Blanco, in Argentina.

His duties at the "Pedagógico" (Pedagogical Institute) of the University of Chile left him enough time to explore the High Andes of Santiago where some glaciers, especially rock glaciers, were not mapped yet. The topographical survey he carried out will still be used nearly forty years later. In March 1952, about 4,700 metres (15,400 ft) above sea level in Nevado Juncal close to Aconcagua, he first observed snow penitents, mysterious structures already encountered by Charles Darwin and attributed by natives to carving of névé by strong winds. Lliboutry qualitatively explained their formation, due to complex phenomena of melting and infrared-radiation re-emitted by the penitents. This marks his first important contribution to glaciology. [4]

Lliboutry spent his last year in Chile (1955) writing a book of nearly 500 pages, Nieves y glaciares de Chile, which foreshadowed the two volumes of his future Traité de glaciologie (more than 1,000 pages). In the following decades, his expertise in glaciology and geophysics will be called upon several times in Latin America, notably by the Peruvian government and UNESCO, before and after the Yungay disaster (a debris flow caused by the outburst of lakes near the Huascarán Glacier, making 20,000 casualties on 31 May 1970). [5]

The glaciologist

He returned to France in 1956 where he secured a position of associate professor with the Grenoble University. He soon entered into contact with Paul-Émile Victor at the French Polar Expeditions, and also with various Swiss, American, and Canadian institutes involved in glaciology. [6] During the next decade, Lliboutry roamed Greenland and Spitsbergen, but the new "Laboratory of Alpine Glaciology" he founded in Grenoble in 1958 will first focus its interest on the near-by Alpine glaciers. [7]

The laboratory founded in 1958 changed its name twenty years later to Laboratory of Glaciology and Geophysics of the Environment, which Lliboutry will head until 1983; then, in 2017 (ten years after his death), to Institute of Geosciences of the Environment, incidentally losing its specificity of glaciology.

The geophysicist

As early as the 1950s, Lliboutry became interested in the Earth's internal structure, and it is remarkable that book chapters and monographs he wrote between 1973 and 2000 are more devoted to geodynamics than glaciology. He notices that the Earth's mantle, even if it deforms a million times slower than glaciers, finally presents with ice a much greater analogy than what can be established between ice and more usual viscous fluids which deform a thousand billion times more quickly. [8] In Grenoble, he set up in 1959 at the master level a new syllabus in general geophysics which will flourish in the 1960s when the Earth's sciences will be refounded by the plate tectonics "theory".

Two articles [9] [10] published in 1969 and 1970 on the modelling of convection within the Earth's mantle showed him, with Claude Allègre, Xavier Le Pichon and Dan McKenzie, in the very closed circle of European scientists at the leading edge of the new theory. He was the first to notice that the viscosity of the asthenosphere, due to partial melting (of the order of one percent), is analogous to what happens in so-called "temperate glaciers" where ice is also partially melted in the same order of magnitude, with the coexistence of a liquid phase and a solid phase. He also modelled the postglacial rebound of the lithosphere as observed in Fennoscandia or Canada following the disappearance of Quaternary ice caps, which allowed him to infer the mechanical properties of the Earth's mantle, its rheology and its viscosity.

On a different note, his most original publication [11] is probably an article published in 1974. Plate kinematics arbitrarily consider one of the lithospheric plates constituting the Earth's surface (usually the Antarctic Plate) as fixed, and the movement of other plates is described relative to it. "Absolute" movements are much more difficult to determine; to achieve this, one usually makes use of hot spots, supposed time-invariant while plates drift over them. Starting from a "simple" principle (the resulting moment of the absolute velocities of the plates on the Earth as a whole is a null vector), Lliboutry managed to compute this absolute movement for all the plates known in his time, without having to involve the "hot spots referential". Both approaches are remarkably consistent.

Distinctions and legacy

From 1976 to 1980, he has presided the European Geophysical Society, then, between 1983 and 1987, the International Commission on Snow and Ice, an emanation of the International Association of Hydrological Sciences. Elected an honorary member of the International Glaciological Society, he was the 1993 recipient of the Seligman Crystal, a prize granted by this Society for major breakthroughs in glaciology (one recipient every two years on the average).

In Chile, the mountain Cerro Lliboutry (1,980 metres (6,500 ft)), close to the Southern Patagonian Ice Field, was named in his honour. First climbed in 2005, it is henceforth designated as el Lliboutry in Chilean mountaineering guidebooks. [12] His name was also officially given in 1983 to the Lliboutry Glacier, which flows from the Boyle Mountains to the Bourgeois Fjord in the Antarctic Peninsula.

Louis Lliboutry was awarded the Légion d'honneur (Chevalier) in 1991 and the Palmes académiques (Commandeur) in 1977. [13]

A recent book in French [14] recalls how he contributed to launch modern glaciology.

Selected publications

In this selection, each publication is signed ″Louis Lliboutry″ as the only author.

Notes and references

  1. 1 2 3 Lliboutry 1999, op. cit., chap. 1.
  2. Néel, Louis (1991). Un siècle de physique (in French). Paris: Odile Jacob.
  3. Lliboutry 1999, op. cit., chap. 3.
  4. Lliboutry, Louis (1954). "The origin of penitents". J. Glaciol. 2 (15): 331–338. doi: 10.1017/S0022143000025181 .
  5. Lliboutry 1999, op. cit., chap. 8.
  6. Lliboutry 1999, op. cit., chap. 5.
  7. Lliboutry 1999, op. cit., chap. 7.
  8. Lliboutry 1999, op. cit., chap. 10.
  9. Lliboutry, Louis (1969). "Sea-floor spreading, continental drift and lithosphere sinking with an asthenosphere at melting point". J. Geophys. Res. 74 (27): 6525–6540. Bibcode:1969JGR....74.6525L. doi:10.1029/JB074i027p06525.
  10. Lliboutry, Louis (1970). "Missing title". J. Geophys. Res.
  11. Lliboutry, Louis (1974). "Plate movement relative to rigid lower mantle". Nature. 250 (5464): 298–300. Bibcode:1974Natur.250..298L. doi:10.1038/250298a0. S2CID   4167803.
  12. andeshandbook.org
  13. Turrel M., op. cit., p. 286
  14. Turrel M., op. cit.

See also

Bibliography

Related Research Articles

<span class="mw-page-title-main">Andes</span> Mountain range in South America

The Andes, Andes Mountains or Andean Mountain Range are the longest continental mountain range in the world, forming a continuous highland along the western edge of South America. The range is 8,900 km (5,530 mi) long, 200 to 700 km wide, and has an average height of about 4,000 m (13,123 ft). The Andes extend from north to south through seven South American countries: Venezuela, Colombia, Ecuador, Peru, Bolivia, Chile, and Argentina.

<span class="mw-page-title-main">Physical geography</span> Study of processes and patterns in the natural environment

Physical geography is one of the three main branches of geography. Physical geography is the branch of natural science which deals with the processes and patterns in the natural environment such as the atmosphere, hydrosphere, biosphere, and geosphere. This focus is in contrast with the branch of human geography, which focuses on the built environment, and technical geography, which focuses on using, studying, and creating tools to obtain,analyze, interpret, and understand spatial information. The three branches have significant overlap, however.

<span class="mw-page-title-main">Claude Lorius</span> French glaciologist (1932–2023)

Claude Lorius was a French glaciologist. He was director emeritus of research at CNRS. He was the director of the Laboratoire de glaciologie et géophysique de l'environnement in Grenoble from 1983 to 1988.

<span class="mw-page-title-main">Ojos del Salado</span> Highest volcano in the world

Nevado Ojos del Salado is a dormant complex volcano in the Andes on the Argentina–Chile border. It is the highest volcano on Earth and the highest peak in Chile. The upper reaches of Ojos del Salado consist of several overlapping lava domes, lava flows and volcanic craters, with an only sparse ice cover. The complex extends over an area of 70–160 square kilometres (27–62 sq mi) and its highest summit reaches an altitude of 6,893 metres (22,615 ft) above sea level. Numerous other volcanoes rise around Ojos del Salado.

Viedma is a subglacial volcano whose existence is questionable. It is supposedly located below the ice of the Southern Patagonian Ice Field, an area disputed between Argentina and Chile. The 1988 eruption deposited ash and pumice on the ice field and produced a mudflow that reached Viedma Lake. The exact position of the edifice is unclear, both owing to the ice cover and because the candidate position, the "Viedma Nunatak", does not clearly appear to be of volcanic nature.

Henri-Louis Duhamel du Monceau, was a French physician, naval engineer and botanist. The standard author abbreviation Duhamel is used to indicate this person as the author when citing a botanical name.

André de Cayeux de Senarpont was a French paleontologist and geologist known for being a pioneer in planetary geology.

<span class="mw-page-title-main">Louis Bertrand Castel</span> Mathematician, philosopher

Louis Bertrand Castel was a French mathematician born in Montpellier, who entered the order of the Jesuits in 1703. Having studied literature, he afterwards devoted himself entirely to mathematics and natural philosophy. After moving from Toulouse to Paris in 1720, at the behest of Bernard de Fontenelle, Castel acted as the science editor of the Jesuit Journal de Trévoux.

<span class="mw-page-title-main">Annot</span> Commune in southeastern France

Annot is a commune in the Alpes-de-Haute-Provence department in the Provence-Alpes-Côte d'Azur region of southeastern France.

Penitentes, or nieves penitentes, are snow formations found at high altitudes. They take the form of elongated, thin blades of hardened snow or ice, closely spaced and pointing towards the general direction of the sun.

<span class="mw-page-title-main">Édouard André</span> French horticulturalist, landscape designer

Édouard François André was a French horticulturalist, landscape designer, as well as a leading landscape architect of the late 19th century, famous for designing city parks and public spaces in Lithuania, Monte Carlo and Montevideo.

Sabba S. Ștefănescu was a Romanian geophysicist, professor of geophysics, member of the Romanian Academy. He was the cofounder, together with Liviu Constantinescu, of the Romanian school of geophysics.

<span class="mw-page-title-main">Astrolabe Glacier</span> Glacier in Antarctica

Astrolabe Glacier is a glacier 7 kilometres (4 nmi) wide and 19 kilometres (10 nmi) long, flowing north-northeast from the continental ice and terminating at the coast in a prominent tongue at the east side of Geologie Archipelago. It was first sighted in 1840 by the French expedition under Captain Jules Dumont d'Urville, although no glaciers were noted on d'Urville's chart of this coast but a formidable icy dike with perpendicular flanks of 37.7 m high according to the joined plate, corresponding to the glacier tongue. The glacier was photographed from the air by U.S. Navy Operation Highjump in January 1947. It was charted by the French Antarctic Expedition, 1949–51, and named after d'Urville's flagship, the Astrolabe.

<span class="mw-page-title-main">Palomo</span> Mountain in Chile

Palomo is a 4,860 metres (15,940 ft) high Chilean stratovolcano located in the commune of Machali, Cachapoal province, Libertador General Bernardo O'Higgins Region, west of Caldera del Atuel. Together with Tinguiririca it is one of two volcanoes in the region with evidence of Holocene volcanism. The volcano is remote and knowledge on its geology and potential volcanic hazards is limited.

<span class="mw-page-title-main">Geology of Chile</span>

The geology of Chile is a characterized by processes linked to subduction, such as volcanism, earthquakes, and orogeny. The building blocks of Chile's geology were assembled during the Paleozoic Era when Chile was the southwestern margin of the supercontinent Gondwana. In the Jurassic, Gondwana began to split, and the ongoing period of crustal deformation and mountain building known as the Andean orogeny began. In the Late Cenozoic, Chile definitely separated from Antarctica, and the Andes experienced a significant rise accompanied by a cooling climate and the onset of glaciations.

<span class="mw-page-title-main">Antoine Joseph Jobert de Lamballe</span> French surgeon

Antoine Joseph Jobert de Lamballe was a French surgeon. He was born at Matignon, studied medicine at Paris, and in 1830 became surgeon at the Hôpital Saint-Louis. He was elected to the Academy of Medicine in 1840 and to the Academy of Sciences in 1856.

<span class="mw-page-title-main">Fleury François Richard</span> French painter

Fleury François Richard, sometimes called Fleury-Richard, was a French painter of the École de Lyon. A student of Jacques-Louis David, Fleury-Richard and his friend Pierre Révoil were precursors of the Troubador style.

<span class="mw-page-title-main">Dry Andes</span>

The Dry Andes is a climatic and glaciological subregion of the Andes. Together with the Wet Andes it is one of the two subregions of the Argentine and Chilean Andes. The Dry Andes runs from the Atacama Desert in northern Chile and Northwest Argentina south to a latitude of 35°S in Chile. In Argentina the Dry Andes reaches 40°S due to the leeward effect of the Andes. According to Luis Lliboutry the Dry Andes can be defined by the distribution of penitentes. The southernmost well developed penitentes are found on Lanín Volcano.

Scientific ice drilling began in 1840, when Louis Agassiz attempted to drill through the Unteraargletscher in the Alps. Rotary drills were first used to drill in ice in the 1890s, and thermal drilling, with a heated drillhead, began to be used in the 1940s. Ice coring began in the 1950s, with the International Geophysical Year at the end of the decade bringing increased ice drilling activity. In 1966, the Greenland ice sheet was penetrated for the first time with a 1,388 m hole reaching bedrock, using a combination of thermal and electromechanical drilling. Major projects over the following decades brought cores from deep holes in the Greenland and Antarctic ice sheets.

<span class="mw-page-title-main">Jérôme Chappellaz</span> French geochemist and paleoclimatologist (born 1964)

Jérôme Chappellaz is a French glaciologist, geochemist and paleoclimatologist who is director of the French Polar Institute. A senior researcher at France's National Center for Scientific Research (CNRS), he is a co-founder and chairman of the Ice Memory Foundation.