Macrotermes bellicosus | |
---|---|
minor soldier and major workers | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Arthropoda |
Class: | Insecta |
Order: | Blattodea |
Infraorder: | Isoptera |
Family: | Termitidae |
Genus: | Macrotermes |
Species: | M. bellicosus |
Binomial name | |
Macrotermes bellicosus (Smeathman, 1781) | |
Macrotermes bellicosus is a species of Macrotermes . The queens are the largest amongst known termites, measuring about 4.2 inches (110 mm) long when physogastric. The workers average 0.14 in (3.6 mm) in length and soldiers are slightly larger. Bellicosus means "combative" in Latin. The species is a member of a genus indigenous to Africa and South-East Asia. [1]
There are two worker castes in M. bellicosus, the major worker and the minor worker. In both cases, the workers begin their lives by taking care of the queen, and later on leave the nest to begin foraging. The point at which the worker leaves the nest to begin gathering food differs slightly between the two castes. Major workers will leave at any point between 13 and 25 days after moulting, and the minor worker exits between 9 and 32 days. [2]
Activities of M. bellicosus that go on outside the nest, which mainly consist of exploration and food gathering, show a division of labor between the two worker castes. The exploration phase, where underground passages are built radiating outward from the nest, is mainly attributed to the minor workers, and major worker activity is low during this period. Once food is discovered, however, there is a shift in this division of labor and the major workers will then be the main caste that is charged with gathering the food. Recruitment of new minor workers during this period is low, and those minor workers that have already been recruited will continue to construct passages near the food. This division of labor normally favors a major to minor worker ratio where minor workers are in much higher numbers until food is discovered, at which point the ratio will continually lean towards increasing numbers of major workers. [3]
Two different feeding groups were established in M. bellicosus based on examining the gut contents of workers in foraging sites, the fungus comb and queen cell. These two groups differed in abdomen coloration, with the majority of workers having a dark brown abdomen that was correlated with feeding on the fungus comb, and a smaller amount having a reddish-brown abdomen caused by feeding on plant litter. There is a division of food intake between the major and minor workers, based on the fact that most of the termites with reddish-brown abdomens, caused by consuming plant litter, were major workers. Because the fungus comb is built with the feces of consumed plant litter, major workers are dominant in fungus comb construction and are also the dominant worker caste for food processing. [4]
The division of labor between minor and major workers also causes there to be a difference in the pheromone trails that each type of caste will leave. Trails that are left by minor workers, which can contain information about the presence of food based on the existence of certain pheromones, will attract both types of castes. The food information in these trails is only detected by major workers, who will orient themselves toward the food, while minor workers will follow all trails regardless of food information. Through this system, major workers will usually be traveling towards food, while minor workers will be exploring new territory. These minor worker trails have been shown to be generally more attractive than trails left by a mixed population of major and minor workers, indicating that the major workers may leave a trail that is antagonistic to the minor worker trail. This could be a mechanism for dividing major worker labor between various food sources by causing trails that are already being followed by major workers to be less attractive. [5]
M. bellicosus individuals showed different types of intraspecific colony recognition behavior depending on caste. Minor soldiers would typically act aggressive, while major workers showed no aggression but instead would exhibit varying degrees of examination behavior. The variation of this behavior could not be correlated to mound size, age or spatial difference between colonies, indicating that there was no type of dear enemy effect. These behaviors were consistent with their colonies over long periods of time. [6]
M. bellicosus will construct mounds differently based on the surrounding habitat, as seen in observations made in Comoé National Park. In the forest, the mounds are constructed with thick walls and are dome shaped, whereas the mounds that are constructed in the savanna have thin walls and deviate from the simple dome construction to more complicated structures. Heating experiments demonstrated that this difference in structure is due to different thermal properties of each mound as a response to the unique habitats. Mounds in the cooler forest habitat will retain their temperature for longer periods of time while mounds in the warmer savanna will shed heat faster. [7] M. bellicosus individuals will burrow themselves in the subsoil and collect clay in their mouths. The clay is moistened by their saliva. Mound building is usually most labor-intensive in the wet months. [1]
Pressures from predation play a role in the foraging behavior of M. bellicosus, which will vary between the two types of environments. This was measured by observing when the termites will stop foraging in an area while varying the pressure from predators. In the savanna, there was gradual increase in the amount of unused food remaining in response to increasing predation, while in contrast food was immediately abandoned in response to any predation in the forest. Also, in the absence of predation, less food was left not utilized in the savanna, indicating that a higher value is placed on food in this particular habitat. These observations are in accordance with the higher availability of food in the forest in comparison to the savanna. [8]
Examining the reproductive outputs of the two types of M. bellicosus habitats showed that the colonies in the savanna reproduced more frequently than the forest colonies, and also produce higher numbers of offspring. Likewise, the growth rates of the colony mounds, which can be correlated with the overall growth rates of the colonies, are also higher in the savanna mounds. Despite the higher availability of food in the forest habitat, and lower probability of survival in the savanna, the lifetime reproductive success of the colonies in the savanna were estimated to be much higher than those in the forest. [9]
Foraging activities of M. bellicosus and other detritivorous termites are at a peak during the rainy season. It was observed that in the savanna, where even during the rainy season the availability of food is limited, the other termites exhibit complementary foraging in response to M. bellicosus, where they were more active in the absence of this dominant detritivore. This behavior indicates that there may be interspecific competition occurring between termites for available resources. [10]
Termites are a group of detritophagous eusocial insects which consume a wide variety of decaying plant material, generally in the form of wood, leaf litter, and soil humus. They are distinguished by their moniliform antennae and the soft-bodied and often unpigmented worker caste for which they have been commonly termed "white ants"; however, they are not ants, to which they are distantly related. About 2,972 extant species are currently described, 2,105 of which are members of the family Termitidae.
Trophallaxis is the transfer of food or other fluids among members of a community through mouth-to-mouth (stomodeal) or anus-to-mouth (proctodeal) feeding. Along with nutrients, trophallaxis can involve the transfer of molecules such as pheromones, organisms such as symbionts, and information to serve as a form of communication. Trophallaxis is used by some birds, gray wolves, vampire bats, and is most highly developed in eusocial insects such as ants, wasps, bees, and termites.
Autothysis or suicidal altruism is the process where an animal destroys itself via an internal rupturing or explosion of an organ which ruptures the skin. The term was proposed by Ulrich Maschwitz and Eleonore Maschwitz in 1974 to describe the defensive mechanism of Colobopsis saundersi, a species of ant. It is caused by a contraction of muscles around a large gland that leads to the breaking of the gland wall. Some termites release a sticky secretion by rupturing a gland near the skin of their neck, producing a tar effect in defense against ants.
Mound-building termites are a group of termite species that live in mounds which are made of a combination of soil, termite saliva and dung. These termites live in Africa, Australia and South America. The mounds sometimes have a diameter of 30 metres (98 ft). Most of the mounds are in well-drained areas. Termite mounds usually outlive the colonies themselves. If the inner tunnels of the nest are exposed it is usually dead. Sometimes other colonies, of the same or different species, occupy a mound after the original builders' deaths.
Blattodea is an order of insects that contains cockroaches and termites. Formerly, termites were considered a separate order, Isoptera, but genetic and molecular evidence suggests they evolved from within the cockroach lineage, cladistically making them cockroaches as well. The Blattodea and the mantis are now all considered part of the superorder Dictyoptera. Blattodea includes approximately 4,400 species of cockroach in almost 500 genera, and about 3,000 species of termite in around 300 genera.
Task allocation and partitioning is the way that tasks are chosen, assigned, subdivided, and coordinated within a colony of social insects. Task allocation and partitioning gives rise to the division of labor often observed in social insect colonies, whereby individuals specialize on different tasks within the colony. Communication is closely related to the ability to allocate tasks among individuals within a group. This entry focuses exclusively on social insects. For information on human task allocation and partitioning, see division of labour, task analysis, and workflow.
The Macrotermitinae, the fungus-growing termites, constitute a subfamily of the family Termitidae that is only found within the Old World tropics.
Nasutitermes corniger is a species of arboreal termite that is endemic to the neotropics. It is very closely related to Nasutitermes ephratae. The species has been studied relatively intensively, particularly on Barro Colorado Island, Panama. These studies and others have shown that the termite interacts with many different organisms including a bat that roosts in its nest and various species of ants that cohabit with the termite.
Kalotermitidae is a family of termites, commonly known as drywood termites. Kalotermitidae includes 21 genera and 419 species. The family has a cosmopolitan circumtropical distribution, and is found in functionally arid environments.
Dorylus laevigatus is a member of the army ant genus Dorylus, or Old World army ants. More specifically known as "driver ants", the genus Dorylus is abundant throughout Africa and stretches into tropical Asia, where D. laevigatus is primarily found. They are a eusocial colony-forming species, which live primarily underground, rarely venturing to the surface for any reason. D. laevigatus colonies are small for army ants, estimated averages falling between 30,000 and 1,000,000 individuals.
The Hodotermitidae are a basal Old World family of termites known as the harvester termites. They are distinguished by the serrated inner edge of their mandibles, and their functional compound eyes which are present in all castes. They forage for grass at night and during daylight hours, and the pigmented workers are often observed outside the nest. Their range includes the deserts and savannas of Africa, the Middle East, and Southwest Asia. Their English name refers to their habit of collecting grass, which is not unique to the family however.
Reticulitermes is a termite genus in the family Rhinotermitidae. They are found in most temperate regions on Earth including much of Asia and the Middle East, Western Europe, and all of North America.
Hodotermes is a genus of African harvester termites in the Hodotermitidae. They range from Palaearctic North Africa, through the East African savannas to the karroid regions of southern Africa. As with harvester termites in general, they have serrated inner edges to their mandibles, and all castes have functional compound eyes. They forage for grass at night and during the day, and their pigmented workers are often observed outside the nest.
An ergatoid is a permanently wingless reproductive adult ant or termite. The similar but somewhat ambiguous term ergatogyne refers to any intermediate form between workers and standard gynes. Ergatoid queens are distinct from other ergatogyne individuals in that they are morphologically consistent within a species and are always capable of mating, whereas inter caste individuals, another class of ergatogynes, often are not. Ergatoids can exhibit wide morphological differences between species, sometimes appearing almost identical to normal workers and other times being quite distinct from both workers and standard queens. In addition to morphological features, ergatoids among different species can exhibit a wide range of behaviors, with some ergatoids acting only as reproductives and others actively foraging. Ergatoid queens have developed among a large number of ant species, and their presence within colonies can often provide clues on the social structures of colonies and as to how new colonies are founded. Without wings, almost all species of ants that solely produce ergatoid queens establish new colonies by fission.
Megaponera analis is the sole species of the genus Megaponera. They are a strictly termite-eating (termitophagous) ponerine ant species widely distributed in Sub-Saharan Africa and most commonly known for their column-like raiding formation when attacking termite feeding sites. Their sophisticated raiding behaviour gave them the common name Matabele ant after the Matabele tribe, fierce warriors who overwhelmed various other tribes during the 1800s. With some individuals reaching up to 25 millimetres (0.98 in) in length, M. analis is one of the world's largest ants.
Macrotermes is a genus of termites belonging to the subfamily Macrotermitinae and widely distributed throughout Africa and South-East Asia. Well-studied species include Macrotermes natalensis and M. bellicosus.
Macrotermes carbonarius, also known as Kongkiak in Malay, is a large black species of fungus-growing termite in the genus Macrotermes. It is one of the most conspicuous species of Macrotermes found in the Indomalayan tropics, forming large foraging trails in the open that can extend several metres in distance. M. carbonarius is a highly aggressive species with the soldiers possessing large curving mandibles that easily break skin. It is found in Cambodia, Malaysia, Myanmar, Singapore, Thailand and Vietnam.
Prorhinotermes simplex, the Cuban subterranean termite, is a species of lower termite in the genus Prorhinotermes. It is found in Colombia. Like others in its genus, it is a single-site nesting termite that moves to a new food source when theirs is gone, and it lacks a true worker caste.
Syntermes is a genus of large Neotropical higher termites within the subfamily Syntermitinae. The genus is found only in South America where members are distributed widely throughout the continent, being found from the tropical rainforests of Colombia to the savannas of Brazil and Northern Argentina.
Constrictotermes cyphergaster is a Neotropical species of open-air foraging nasute termite within the genus Constrictotermes. This species is distributed widely throughout South America and lives within xeric habitats such as the savannas found in Paraguay, Bolivia, Central Brazil, and Northern Argentina. C. cyphergaster primarily builds arboreal and transient epigeic nests and mainly consumes dead woods at varying stages of decomposition.