Macrotermitinae | |
---|---|
Structure of a Macrotermes natalensis mound | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Arthropoda |
Class: | Insecta |
Order: | Blattodea |
Infraorder: | Isoptera |
Family: | Termitidae |
Subfamily: | Macrotermitinae Kemner, 1934 |
Genera | |
14, see text |
The Macrotermitinae, the fungus-growing termites, constitute a subfamily of the family Termitidae that is only found within the Old World tropics.
This subfamily consists of 12 genera and about 350 species and are distinguished by the fact that they cultivate fungi inside their nests to feed the members of the colony. Despite the popular reputation of termites for breaking down and digesting wood, most termite species do not possess the capability to digest the cellulose in wood. Macrotermitinae instead use their mounds to cultivate fungus in a symbiotic relationship, similar to leaf-cutter ants (fungus-cultivating ants). Worker termites find plant debris and macerate it, chewing and moistening the material. They excrete the resulting fecal pellets inside the mound. Other worker termites use this matter to construct fungal combs. The mycelium then spreads through the comb and digests the plant material into a form that makes for nutritious food for the colony. The mounds are kept humid as possible to encourage rapid fungal growth.
The labrum of the imago and worker have a sclerotized transverse band at the posterior section; labrum appears divided by a "hinge" of hyaline tissue. Mesentero-proctodeal junction with four lobes. [1]
Macrotermitinae has a complex colony system. A mature Macrotermitinae colony consists of a royal pair, sterile caste, winged reproductive called "alates" and young ones. A royal pair are a king and queen which are the only ones capable of reproduction. The sterile caste is made up of workers (major workers and minor workers) and soldiers (major soldiers and minor soldiers). The royal pair produces workers, soldiers and alates (future royal pairs). The royal pair lives in the "royal chamber" where the queen continuously lays eggs when the king mates with her. Young ones are immature workers, soldier and alates. They live in the royal chamber after they hatch. Workers concentrate on colony process, for example collecting dead plant material, making the fungal comb, brood care, taking care of young ones etc. Soldiers protect the colony.
The Macrotermitinae subfamily has a widespread distribution through the tropics of Africa, the Middle East, and southern and southeastern Asia, but it is not present in Australia or the New World. [2] Fossil evidence from Tanzania show that the Macrotermitinae had developed agriculture about 31 million years ago. [3] Phylogenetic analysis places the development of fungiculture several million years after the loss of gut protozoa by the ancestor of the Termitidae family, which is estimated to have happened between 50 and 80 million years ago. [4]
Like other termites, Macrotermitinae are soil engineers, mixing their salivary secretions with soil particles to make their strong, hard mounds and galleries. [5] Their mounds are some of the largest built by any species of termite, with volumes of thousands of litres and lasting for many decades. They are probably the most complex mound colonies of any insect group. [6] There are 11 accepted genera in the Macrotermitinae and about 330 species, with the greatest diversity being in Africa. About 40 species of Termitomyces have been identified as symbionts. In contrast to the fungus-growing ants in the tribe Attini, the Termitomyces often bear fruiting bodies which produce spores, and it is believed that transmission of the fungus to other termites is mainly by horizontal transmission (sibling to sibling) rather than by vertical transmission (mother to daughter). Some species are an exception to this, and in all five species of the genus Microtermes tested, the symbiont fungi did not bear sexual fruiting bodies, and transmission was through the maternal route. Another exception was the single species Macrotermes bellicosus where again the fungus did not fruit, and where transmission was paternal. [6]
They have a rather rigid caste system, with little flexibility after the early instar stage. They also exhibit complex behavioural activities and their presence in an arid or semi-arid area can be dominant over other termite species. As compared to other higher termites however, they show some primitive features and have failed to evolve soil consumption. [5]
The mound contains galleries and chambers in which the termites grow fungi as symbionts. The fungi concerned are species of Termitomyces ; it is unclear whether one species of termite is always associated with one species of fungus, and it is probable that several species of termite may utilise a single fungal species. The worker termites bring plant material such as dried grass, decaying wood and leaf litter, back to the mound. This material is chewed up and semi-digested by the termites, fertilised with their faeces and placed in the chambers where it is quickly colonised by the fungus to form a "fungus comb". The termites cultivate these fungus gardens, adding more substrate as required, and removing the older parts of the comb for consumption by all members of the colony. [6]
In addition, some species feed on various types of living and dead plant material including wood, but not on decomposing vegetation; [7] these termites have a similar microbial gut flora to other species of termite. [2]
Macrotermitinae like most eusocial insects primarily reproduce through a mass-swarming event known as a nuptial flight, of which the releasing of mature winged sexuals (alates) is coordinated with neighboring colonies and triggered by seasonal rainfalls. The nuptial flights of most species are nocturnal in nature although some are crepuscular or diurnal.
Shortly after a nuptial flight, the alates quickly remove their wings and set off to form pairs consisting of the male (king) and female (queen) individuals respectively. The fully claustral royal pairs rapidly sequester themselves within the clay rich sandy soils of their environment and form a copularium, also known as a claustral chamber. The pairs mate and soon eggs are laid over a couple days, which can take anywhere from 2 - 4 weeks to hatch into several dozen nymphs that can take anywhere between 1 - 3 months to mature into the first workers and soldiers.
Symbiont life cycle
Horizontal transmission
Around the time of the maturity and emergence of the first foraging workers, the appearance of fruiting bodies or mushrooms can be observed sprouting from the mounds of mature Macrotermitinae colonies, typically between 1/2 - 3 months after nuptial flights. The mushrooms release sexual spores (basidiospores) which are wind dispersed into the environment. The nanitic workers pick up these spores incidentally as they forage for lignocellulose detritus; broadly consisting of decaying leaf, wood and grass debris with which the spores had settled upon, and which in turn are ingested and partially digested along with the collected detritus. The detritus along with the spores is then formed into round pellets known as mylospheres, which are then molded into the primordial fungus comb. The spores after having survived the passage through the gut of their termite host begin to germinate into homokaryonic hyphae which rapidly colonize the new fungus comb. The resulting homokaryonic hyphae then fuse with unrelated homokaryons of the same species in a process called plasmogamy, resulting in a heterokaryon with multiple genetically distinguished nuclei.
Due to this method of sexual reproduction, a mixed culture of many different genotypes exist within the fungus gardens of young Macrotermitinae colonies. In contrast, mature colonies are known to only have one singularly cloned Termitomyces strain. A monoculture likely arises in a colony through positive-frequency dependent selection, in which a genotype outcompetes others via preference by the termites for the most vigorously productive and prolific strain. As the fungus grows, white nutrient rich spheres known as mycotêtes, otherwise known as "nodules" or sporodochium, begin to grow on the comb and are primarily what the termites eat. The mycotêtes contain substructures known as conidiophores that form asexual spores (conidia) that are used to asexually propagate the fungus in the colony. The fungus genotype that exhibits the highest production of mycotêtes is generally preferred by the termites, resulting in the high expression of that strain which over time leads to the emergence of a monoculture in the colony. Similar but different looking structures known as primordia also form and are precursors to the sexual fruiting bodies of Termitomyces, although their growth is normally suppressed by the consumption of the primordia by the termites. [8] [9]
In most Macrotermitinae, the above described is how their Termitomyces symbiont is propagated generation-to-generation. Few known exceptions exist, the most prominent being Macrotermes bellicosus of the genus Macrotermes and species belonging to the genus Microtermes. In the case of the exceptions, the symbiont is vertically transmitted, in which the royal termite pair are the ones to carry and propagate the fungus every new generation and in which the fungus is always asexually propagated via parent-to-offspring with no sexual reproduction of the symbiont.
Termites are a group of detritophagous eusocial insects which consume a variety of decaying plant material, generally in the form of wood, leaf litter, and soil humus. They are distinguished by their moniliform antennae and the soft-bodied and often unpigmented worker caste for which they have been commonly termed "white ants"; however, they are not ants, to which they are only distantly related. About 2,972 extant species are currently described, 2,105 of which are members of the family Termitidae.
Leafcutter ants are fungus-growing ants that share the behaviour of cutting leaves which they carry back to their nests to farm fungus. Next to humans, leafcutter ants form some of the largest and most complex animal societies on Earth. In a few years, the central mound of their underground nests can grow to more than 30 m (98 ft) across, with smaller radiating mounds extending out to a radius of 80 m (260 ft), taking up 30 to 600 m2 and converted into 3.55 m individuals.
Fungus-growing ants comprise all the known fungus-growing ant species participating in ant–fungus mutualism. They are known for cutting grasses and leaves, carrying them to their colonies' nests, and using them to grow fungus on which they later feed.
Atta sexdens is a species of leafcutter ant belonging to the tribe Attini, native to America, from the southern United States (Texas) to northern Argentina. They are absent from Chile. They cut leaves to provide a substrate for the fungus farms which are their principal source of food. Their societies are among the most complex found in social insects. A. sexdens is an ecologically important species, but also an agricultural pest. Other Atta species, such as Atta texana, Atta cephalotes and others, have similar behavior and ecology.
Ant–fungus mutualism is a symbiosis seen between certain ant and fungal species, in which ants actively cultivate fungus much like humans farm crops as a food source. There is only evidence of two instances in which this form of agriculture evolved in ants resulting in a dependence on fungi for food. These instances were the attine ants and some ants that are part of the Megalomyrmex genus. In some species, the ants and fungi are dependent on each other for survival. This type of codependency is prevalent among herbivores who rely on plant material for nutrition. The fungus’ ability to convert the plant material into a food source accessible to their host makes them the ideal partner. The leafcutter ant is a well-known example of this symbiosis. Leafcutter ants species can be found in southern South America up to the United States. However, ants are not the only ground-dwelling arthropods which have developed symbioses with fungi. A similar mutualism with fungi is also noted in termites within the subfamily Macrotermitinae which are widely distributed throughout the Old World tropics with the highest diversity in Africa.
Nuptial flight is an important phase in the reproduction of most ant, termite, and some bee species. It is also observed in some fly species, such as Rhamphomyia longicauda.
Termitomyces, the termite mushrooms, is a genus of basidiomycete fungi belonging to the family Lyophyllaceae. All species in the genus are completely dependent on fungus-growing termites, the Macrotermitinae, to survive, and vice versa. They are the food source for these termites, who enjoy an obligate symbiosis with the genus similar to that between Atta ants and Attamyces mushrooms. Termitomyces mushrooms are edible, and are highly regarded for their flavor.
Fungivory or mycophagy is the process of organisms consuming fungi. Many different organisms have been recorded to gain their energy from consuming fungi, including birds, mammals, insects, plants, amoebas, gastropods, nematodes, bacteria and other fungi. Some of these, which only eat fungi, are called fungivores whereas others eat fungi as only part of their diet, being omnivores.
Acromyrmex is a genus of New World ants of the subfamily Myrmicinae. This genus is found in South America and parts of Central America, México and the Caribbean Islands, and contains 33 known species. Commonly known as "leafcutter ants" they comprise one of the two genera of advanced attines within the tribe Attini, along with Atta.
Macrotermes bellicosus is a species of Macrotermes. The queens are the largest amongst known termites, measuring about 4.2 inches (110 mm) long when physogastric. The workers average 0.14 in (3.6 mm) in length and soldiers are slightly larger. Bellicosus means "combative" in Latin. The species is a member of a genus indigenous to Africa and South-East Asia.
Termitotrox cupido is a species of scarab beetle in the subfamily Termitotroginae. It was first described by Munetoshi Maruyama in 2012, having been discovered living inside a nest of the termite Hypotermes makhamensis in Cambodia. It is a tiny, blind and flightless insect.
Hypotermes makhamensis is a species of termite in the subfamily Macrotermitinae of the family Termitidae. It lives in dry evergreen forests in tropical south-eastern Asia and builds termite mounds in which it cultivates fungus for use as food.
Macrotermes michaelseni is a species of termite in the family Termitidae, found in sub-Saharan Africa. It is associated with the fungus Termitomyces schimperi.
Macrotermes is a genus of termites belonging to the subfamily Macrotermitinae and widely distributed throughout Africa and South-East Asia. Well-studied species include Macrotermes natalensis and M. bellicosus.
Macrotermes carbonarius, also known as Kongkiak in Malay, is a large black species of fungus-growing termite in the genus Macrotermes. It is one of the most conspicuous species of Macrotermes found in the Indomalayan tropics, forming large foraging trails in the open that can extend several metres in distance. M. carbonarius is a highly aggressive species with the soldiers possessing large curving mandibles that easily break skin. It is found in Cambodia, Malaysia, Myanmar, Singapore, Thailand and Vietnam.
Termitomyces eurrhizus species of agaric fungus in the family Lyophyllaceae native to Pakistan, India, Sri Lanka, Burma, southwestern China and Malaysia. The fungus has a symbiotic relationship with termites, its mushrooms growing out of mounds after periods of rainfall. It is eaten in Malaysia and the Indian subcontinent.
Macrotermes natalensis is a fungus-growing termite species of South Africa that belongs to the genus Macrotermes. This species is associated with the Termitomyces fungal genus. M. natalensis has domesticated Termitomyces to produce food for the colony. Both termite species- fungal genus- are obligate and mutually beneficial where termite relies on the fungus to break down for plant materiel and nutrient resource. In contrast, the fungal species obtain plant material and optimal conditions for growth.
Odontotermes is a termite genus belonging to subfamily Macrotermitinae, which is native to the Old World. They are most destructive in wooden homes, and are agricultural pests in the tropics and subtropics of Africa and Asia. It is the most diverse termite genus in Africa, with 78 species recorded.
Odontotermes obesus is a species of termite in the family Termitidae. It is native to tropical southwestern Asia. This termite cultivates a symbiotic fungus in a special chamber in the nest. Workers gather vegetable detritus which they bring back to the colony, chewing up the material to make a suitable substrate on which the fungus will grow.
Odontotermes formosanus is a species of fungus-growing termite in the family Termitidae. It is native to southeastern Asia and was first described from Taiwan. This termite cultivates a symbiotic fungus in a special chamber in the nest. Workers and soldiers gather vegetable detritus which they bring back to the colony, chewing the material to a pulp to make a suitable substrate on which to grow the fungus.