Magnetic detector

Last updated
Marconi's wireless magnetic detector (London) DETECTEUR MAGNETIQUE (radio).jpg
Marconi's wireless magnetic detector (London)

The magnetic detector or Marconi magnetic detector, sometimes called the "Maggie", was an early radio wave detector used in some of the first radio receivers to receive Morse code messages during the wireless telegraphy era around the turn of the 20th century. [1] [2] Developed in 1902 by radio pioneer Guglielmo Marconi [1] [2] [3] from a method invented in 1895 by New Zealand physicist Ernest Rutherford [4] it was used in Marconi wireless stations until around 1912, when it was superseded by vacuum tubes. [5] It was widely used on ships because of its reliability and insensitivity to vibration. A magnetic detector was part of the wireless apparatus in the radio room of the RMS Titanic which was used to summon help during its famous 15 April 1912 sinking. [6]

Contents

History

One of the first prototype magnetic detectors built by Marconi in 1902, in Milan museum. The sensing coils on this instrument are removed. Detector magnetico Marconi 1902 - Museo scienza e tecnologia Milano.jpg
One of the first prototype magnetic detectors built by Marconi in 1902, in Milan museum. The sensing coils on this instrument are removed.
Recreation of a Marconi ship radio room at the Aalborg Maritime Museum, Aalborg, Denmark. A magnetic detector is on the desk to right of the Marconi tuner receiver, which provided the signal for the magnetic detector. Radio MARCONI.jpg
Recreation of a Marconi ship radio room at the Aalborg Maritime Museum, Aalborg, Denmark. A magnetic detector is on the desk to right of the Marconi tuner receiver, which provided the signal for the magnetic detector.

The primitive spark gap radio transmitters used during the first three decades of radio (1886-1916) could not transmit audio (sound) and instead transmitted information by wireless telegraphy; the operator switched the transmitter on and off with a telegraph key, creating pulses of radio waves to spell out text messages in Morse code. So the radio receiving equipment of the time did not have to convert the radio waves into sound like modern receivers, but merely detect the presence or absence of the radio signal. The device that did this was called a detector. The first widely used detector was the coherer, invented in 1890. The coherer was a very poor detector, insensitive and prone to false triggering due to impulsive noise, which motivated much research to find better radio wave detectors.

Ernest Rutherford had first used the hysteresis of iron to detect Hertzian waves in 1896 [4] [7] by the demagnetization of an iron needle when a radio signal passed through a coil around the needle, however the needle had to be remagnetized so this was not suitable for a continuous detector. [7] Many other wireless researchers such as E. Wilson, C. Tissot, Reginald Fessenden, John Ambrose Fleming, Lee De Forest, J.C. Balsillie, and L. Tieri had subsequently devised detectors based on hysteresis, but none had become widely used due to various drawbacks. [7] Many earlier versions had a rotating magnet above a stationary iron band with coils on it. [8] This type was only periodically sensitive, when the magnetic field was changing, which occurred as the magnetic poles passed the iron.

During his transatlantic radio communication experiments in December 1902 Marconi found the coherer to be too unreliable and insensitive for detecting the very weak radio signals from long-distance transmissions. It was this need that drove him to develop his magnetic detector. Marconi devised a more effective configuration with a moving iron band driven by a clockwork motor passing by stationary magnets and coils, resulting in a continuous supply of iron that was changing magnetization, and thus continuous sensitivity (Rutherford claimed he had also invented this configuration). [8] The Marconi magnetic detector was the "official" detector used by the Marconi Company from 1902 through 1912, when the company began converting to the Fleming valve and Audion-type vacuum tubes. It was used through 1918.

Description

(A) Antenna wire, (B,B) Iron band around pulleys, (C, C) RF excitation winding on glass tube through which the iron band travels, (D) Audio pickup winding, (E) Ground-plate, (S, N) Permanent magnets, (T) Telephone receiver. Marconi magnetic detector scheme.jpg
(A) Antenna wire, (B,B) Iron band around pulleys, (C, C) RF excitation winding on glass tube through which the iron band travels, (D) Audio pickup winding, (E) Ground-plate, (S, N) Permanent magnets, (T) Telephone receiver.

See drawing at right. The Marconi version consisted of an endless iron band (B) built up of 70 strands of number 40 gage silk-covered iron wire. In operation, the band passes over two grooved pulleys rotated by a wind-up clockwork motor. [1] [2] The iron band passes through the center of a glass tube which is close wound with a single layer along several millimeters with number 36 gage silk-covered copper wire. This coil (C) functions as the radio frequency excitation coil. Over this winding is a small bobbin wound with wire of the same gauge to a resistance of about 140 ohms. This coil (D) functions as the audio pickup coil. Around these coils two permanent horseshoe magnets are arranged to magnetize the iron band as it passes through the glass tube. [1]

How it works

The device works by hysteresis of the magnetization in the iron wires. [1] [2] The permanent magnets are arranged to create two opposite magnetic fields each directed toward (or away) from the center of the coils in opposite directions along the wire. This functions to magnetize the iron band along its axis, first in one direction as it approaches the center of the coils, then reverse its magnetism to the opposite direction as it leaves from the other side of the coil. [2] Due to the hysteresis (coercivity) of the iron, a certain threshold magnetic field (the coercive field, Hc) is required to reverse the magnetization. So the magnetization in the moving wires does not reverse in the center of the device where the field reverses, but some way toward the departing side of the wires, when the field of the second magnet reaches Hc. [1] [2] Although the wire itself is moving through the coil, in the absence of a radio signal the location where the magnetization "flips" is stationary with respect to the pickup coil, so there is no flux change and no voltage is induced in the pickup coil.

The radio signal from the antenna (A) is received by a tuner (not shown) and passed through the excitation coil C, the other end of which is connected to ground (E). [2] The rapidly reversing magnetic field from the coil exceeds the coercivity Hc and cancels the hysteresis of the iron, causing the magnetization change to suddenly move up the wire to the center, between the magnets, where the field reverses. [1] [2] This had an effect similar to thrusting a magnet into the coil, causing the magnetic flux through the pickup coil D to change, inducing a current pulse in the pickup coil. The audio pickup coil is connected to a telephone receiver (earphone) (T) which converts the current pulse to sound. [2]

The radio signal from a spark gap transmitter consisted of pulses of radio waves (damped waves) which repeated at an audio rate, around several hundred per second. Each pulse of radio waves produced a pulse of current in the earphone, [1] so the signal sounded like a musical tone or buzz in the earphone.

Technical details

Magnetic detector in use Marconi magnetic detector.jpg
Magnetic detector in use

The iron band was turned by a mainspring and clockwork mechanism inside the case. Differing values have been given for the speed of the band, from 1.6 to 7.5 cm per second; the device could probably function over a wide range of band speeds. [8] The operator had to keep the mainspring wound up, using a crank on the side. Operators would sometimes forget to wind it, so the band would stop turning and the detector stop working, sometimes in the middle of a radio message.

The detector produced electronic noise that was heard in the earphone as a "hissing" or "roaring" sound in the background, somewhat fatiguing to listen to. [9] This was Barkhausen noise due to the Barkhausen effect in the iron. [9] As the magnetic field in a given area of the iron wire changed as it moved through the detector, the microscopic domain walls between magnetic domains in the iron moved in a series of jerks, as they got hung up on defects in the iron crystal lattice, then pulled free. Each jerk produced a tiny change in the magnetic field through the coil, and induced a pulse of noise.

Because the output was an audio alternating current and not a direct current, the detector could only be used with earphones and not with the common recording instrument used in coherer radiotelegraphy receivers, the siphon paper tape recorder. [10]

From a technical standpoint, several subtle prerequisites are necessary for operation. The strength of the magnetic field of the permanent magnets at the iron band must be of the same order of magnitude as the strength of the field generated by the radio frequency excitation coil, allowing the radio frequency signal to exceed the threshold hysteresis (coercivity) of the iron. Also, the impedance of the tuner that supplies the radio signal must be low to match the low impedance of the excitation coil, requiring special tuner design considerations. The impedance of the telephone earphone must roughly match the impedance of the audio pickup coil, which is a few hundred ohms. The iron band moves a few millimeters per second. The magnetic detector was much more sensitive than the coherers commonly in use at the time, [1] although not as sensitive as the Fleming valve, which began to replace it around 1912. [5]

In the Handbook Of Technical Instruction For Wireless Telegraphists by: J. C. Hawkhead (Second Edition Revised by H. M. Dowsett) on pp 175 are detailed instructions and specifications for operation and maintenance of Marconi's magnetic detector.

Related Research Articles

<span class="mw-page-title-main">Wireless telegraphy</span> Method of communication

Wireless telegraphy or radiotelegraphy is transmission of text messages by radio waves, analogous to electrical telegraphy using cables. Before about 1910, the term wireless telegraphy was also used for other experimental technologies for transmitting telegraph signals without wires. In radiotelegraphy, information is transmitted by pulses of radio waves of two different lengths called "dots" and "dashes", which spell out text messages, usually in Morse code. In a manual system, the sending operator taps on a switch called a telegraph key which turns the transmitter on and off, producing the pulses of radio waves. At the receiver the pulses are audible in the receiver's speaker as beeps, which are translated back to text by an operator who knows Morse code.

<span class="mw-page-title-main">Electromagnet</span> Magnet created with an electric current

An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. Electromagnets usually consist of wire wound into a coil. A current through the wire creates a magnetic field which is concentrated in the hole in the center of the coil. The magnetic field disappears when the current is turned off. The wire turns are often wound around a magnetic core made from a ferromagnetic or ferrimagnetic material such as iron; the magnetic core concentrates the magnetic flux and makes a more powerful magnet.

<span class="mw-page-title-main">Headphones</span> Device placed near the ears that plays sound

Headphones are a pair of small loudspeaker drivers worn on or around the head over a user's ears. They are electroacoustic transducers, which convert an electrical signal to a corresponding sound. Headphones let a single user listen to an audio source privately, in contrast to a loudspeaker, which emits sound into the open air for anyone nearby to hear. Headphones are also known as earphones or, colloquially, cans. Circumaural and supra-aural headphones use a band over the top of the head to hold the speakers in place. Another type, known as earbuds or earpieces consist of individual units that plug into the user's ear canal. A third type are bone conduction headphones, which typically wrap around the back of the head and rest in front of the ear canal, leaving the ear canal open. In the context of telecommunication, a headset is a combination of headphone and microphone.

<span class="mw-page-title-main">Crystal radio</span> Simple radio receiver circuit for AM reception

A crystal radio receiver, also called a crystal set, is a simple radio receiver, popular in the early days of radio. It uses only the power of the received radio signal to produce sound, needing no external power. It is named for its most important component, a crystal detector, originally made from a piece of crystalline mineral such as galena. This component is now called a diode.

This is an index of articles relating to electronics and electricity or natural electricity and things that run on electricity and things that use or conduct electricity.

<span class="mw-page-title-main">Coherer</span> Early radio wave detector

The coherer was a primitive form of radio signal detector used in the first radio receivers during the wireless telegraphy era at the beginning of the 20th century. Its use in radio was based on the 1890 findings of French physicist Édouard Branly and adapted by other physicists and inventors over the next ten years. The device consists of a tube or capsule containing two electrodes spaced a small distance apart with loose metal filings in the space between. When a radio frequency signal is applied to the device, the metal particles would cling together or "cohere", reducing the initial high resistance of the device, thereby allowing a much greater direct current to flow through it. In a receiver, the current would activate a bell, or a Morse paper tape recorder to make a record of the received signal. The metal filings in the coherer remained conductive after the signal (pulse) ended so that the coherer had to be "decohered" by tapping it with a clapper actuated by an electromagnet, each time a signal was received, thereby restoring the coherer to its original state. Coherers remained in widespread use until about 1907, when they were replaced by more sensitive electrolytic and crystal detectors.

<span class="mw-page-title-main">Radio receiver</span> Device for receiving radio broadcasts

In radio communications, a radio receiver, also known as a receiver, a wireless, or simply a radio, is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. The antenna intercepts radio waves and converts them to tiny alternating currents which are applied to the receiver, and the receiver extracts the desired information. The receiver uses electronic filters to separate the desired radio frequency signal from all the other signals picked up by the antenna, an electronic amplifier to increase the power of the signal for further processing, and finally recovers the desired information through demodulation.

<span class="mw-page-title-main">Aleksandr Popov (physicist)</span> Russian physicist

Alexander Stepanovich Popov was a Russian physicist, who was one of the first persons to invent a radio receiving device.

<span class="mw-page-title-main">Magnetic hysteresis</span> Application of an external magnetic field to a ferromagnet

Magnetic hysteresis occurs when an external magnetic field is applied to a ferromagnet such as iron and the atomic dipoles align themselves with it. Even when the field is removed, part of the alignment will be retained: the material has become magnetized. Once magnetized, the magnet will stay magnetized indefinitely. To demagnetize it requires heat or a magnetic field in the opposite direction. This is the effect that provides the element of memory in a hard disk drive.

<span class="mw-page-title-main">Spark-gap transmitter</span> Type of radio transmitter

A spark-gap transmitter is an obsolete type of radio transmitter which generates radio waves by means of an electric spark. Spark-gap transmitters were the first type of radio transmitter, and were the main type used during the wireless telegraphy or "spark" era, the first three decades of radio, from 1887 to the end of World War I. German physicist Heinrich Hertz built the first experimental spark-gap transmitters in 1887, with which he proved the existence of radio waves and studied their properties.

<span class="mw-page-title-main">Alexanderson alternator</span>

An Alexanderson alternator is a rotating machine invented by Ernst Alexanderson in 1904 for the generation of high-frequency alternating current for use as a radio transmitter. It was one of the first devices capable of generating the continuous radio waves needed for transmission of amplitude modulated signals by radio. It was used from about 1910 in a few "superpower" longwave radiotelegraphy stations to transmit transoceanic message traffic by Morse code to similar stations all over the world.

<span class="mw-page-title-main">Pickup (music technology)</span> Transducer that senses vibration of musical instruments

A pickup is a transducer that captures or senses mechanical vibrations produced by musical instruments, particularly stringed instruments such as the electric guitar, and converts these to an electrical signal that is amplified using an instrument amplifier to produce musical sounds through a loudspeaker in a speaker enclosure. The signal from a pickup can also be recorded directly.

<span class="mw-page-title-main">Barkhausen effect</span>

The Barkhausen effect is a name given to the noise in the magnetic output of a ferromagnet when the magnetizing force applied to it is changed. Discovered by German physicist Heinrich Barkhausen in 1919, it is caused by rapid changes of size of magnetic domains.

<span class="mw-page-title-main">Crystal detector</span> Early radio receiver component

A crystal detector is an obsolete electronic component used in some early 20th century radio receivers that consists of a piece of crystalline mineral which rectifies the alternating current radio signal. It was employed as a detector (demodulator) to extract the audio modulation signal from the modulated carrier, to produce the sound in the earphones. It was the first type of semiconductor diode, and one of the first semiconductor electronic devices. The most common type was the so-called cat's whisker detector, which consisted of a piece of crystalline mineral, usually galena, with a fine wire touching its surface.

<span class="mw-page-title-main">Invention of radio</span> Aspect of history

The invention of radio communication was preceded by many decades of establishing theoretical underpinnings, discovery and experimental investigation of radio waves, and engineering and technical developments related to their transmission and detection. These developments allowed Guglielmo Marconi to turn radio waves into a wireless communication system.

<span class="mw-page-title-main">Electrolytic detector</span> Early radio receiver component

The electrolytic detector, or liquid barretter, was a type of detector (demodulator) used in early radio receivers. First used by Canadian radio researcher Reginald Fessenden in 1903, it was used until about 1913, after which it was superseded by crystal detectors and vacuum tube detectors such as the Fleming valve and Audion (triode). It was considered very sensitive and reliable compared to other detectors available at the time such as the magnetic detector and the coherer. It was one of the first rectifying detectors, able to receive AM (sound) transmissions. On December 24, 1906, US Naval ships with radio receivers equipped with Fessenden's electrolytic detectors received the first AM radio broadcast from Fessenden's Brant Rock, Massachusetts transmitter, consisting of a program of Christmas music.

The timeline of radio lists within the history of radio, the technology and events that produced instruments that use radio waves and activities that people undertook. Later, the history is dominated by programming and contents, which is closer to general history.

In electronics, a ferrite core is a type of magnetic core made of ferrite on which the windings of electric transformers and other wound components such as inductors are formed. It is used for its properties of high magnetic permeability coupled with low electrical conductivity. Moreover, because of their comparatively low losses at high frequencies, they are extensively used in the cores of RF transformers and inductors in applications such as switched-mode power supplies, and ferrite loopstick antennas for AM radio receivers.

<span class="mw-page-title-main">Transformer types</span> Overview of electrical transformer types

A variety of types of electrical transformer are made for different purposes. Despite their design differences, the various types employ the same basic principle as discovered in 1831 by Michael Faraday, and share several key functional parts.

<span class="mw-page-title-main">Quadruplex telegraph</span> Type of electrical telegraph

The Quadruplex telegraph is a type of electrical telegraph which allows a total of four separate signals to be transmitted and received on a single wire at the same time. Quadruplex telegraphy thus implements a form of multiplexing.

References

  1. 1 2 3 4 5 6 7 8 9 Fleming, John Ambrose (1911). "Telegraph"  . In Chisholm, Hugh (ed.). Encyclopædia Britannica . Vol. 26 (11th ed.). Cambridge University Press. pp. 510–541, see page 536, second para, lines 8 & 9 and figure 45. In 1902 Marconi invented two forms of magnetic detector, one of which he developed into an electric wave detector of extraordinary delicacy and utility
  2. 1 2 3 4 5 6 7 8 9 Fleming, John Ambrose (1908). The Principles of Electric Wave Telegraphy. UK: Longmans, Green and Co. pp.  380–382.
  3. Marconi, Guglielmo (1902). "Note on a magnetic detector of electric waves which can be employed as a receiver in space telegraphy". Proceedings of the Royal Society. London. 70 (459–466): 341–344. Bibcode:1902RSPS...70..341M. doi: 10.1098/rspl.1902.0034 .
  4. 1 2 Rutherford, Ernest (1 January 1897). "A magnetic detector of electrical waves and some of its applications". Philosophical Transactions of the Royal Society of London. Royal Society. 189: 1–24. Bibcode:1897RSPTA.189....1R. doi: 10.1098/rsta.1897.0001 .
  5. 1 2 Wenaas, Eric P. (2007). Radiola: The Golden Age of RCA, 1919-1929. Sonoran Publishing. p. 2. ISBN   978-1886606210.
  6. Stephenson, Parks (November 2001). "The Marconi Wireless Installation in R.M.S. Titanic". Old Timer's Bulletin. The Antique Wireless Association. 42 (4). Retrieved May 22, 2016. copied on Stephenson's marconigraph.com personal website
  7. 1 2 3 Phillips, Vivian J. (1980). Early radio wave detectors. Peter Peregrinus, Ltd. and The Science Museum, London. pp.  85–122. ISBN   0906048249.
  8. 1 2 3 Phillips (1980) Early radio wave detectors, p. 103-105
  9. 1 2 Phillips (1980) Early radio wave detectors, p. 98, 102, 106
  10. Fleming, John Ambrose (1916). An elementary manual of radiotelegraphy and radiotelephony for students and operators, 3rd Ed. UK: Longmans, Green and Co. pp. 203, 208.