This article needs additional citations for verification .(October 2014) |
In quantum mechanics, magnetic resonance is a resonant effect that can appear when a magnetic dipole is exposed to a static magnetic field and perturbed with another, oscillating electromagnetic field. Due to the static field, the dipole can assume a number of discrete energy eigenstates, depending on the value of its angular momentum (azimuthal) quantum number. The oscillating field can then make the dipole transit between its energy states with a certain probability and at a certain rate. The overall transition probability will depend on the field's frequency and the rate will depend on its amplitude. When the frequency of that field leads to the maximum possible transition probability between two states, a magnetic resonance has been achieved. In that case, the energy of the photons composing the oscillating field matches the energy difference between said states. If the dipole is tickled with a field oscillating far from resonance, it is unlikely to transition. That is analogous to other resonant effects, such as with the forced harmonic oscillator. The periodic transition between the different states is called Rabi cycle and the rate at which that happens is called Rabi frequency. The Rabi frequency should not be confused with the field's own frequency. Since many atomic nuclei species can behave as a magnetic dipole, this resonance technique is the basis of nuclear magnetic resonance, including nuclear magnetic resonance imaging and nuclear magnetic resonance spectroscopy.
As a magnetic dipole, using a spin system such as a proton; according to the quantum mechanical state of the system, denoted by , evolved by the action of a unitary operator ; the result obeys Schrödinger equation:
States with definite energy evolve in time with phase , () where E is the energy of the state, since the probability of finding the system in state = is independent of time. Such states are termed stationary states, so if a system is prepared in a stationary state, (i.e. one of the eigenstates of the Hamiltonian operator), then P(t) = 1, i.e. it remains in that state indefinitely. This is the case only for isolated systems. When a system in a stationary state is perturbed, its state changes, so it is no longer an eigenstate of the system's complete Hamiltonian. This same phenomenon happens in magnetic resonance for a spin system in a magnetic field.
The Hamiltonian for a magnetic dipole (associated with a spin particle) in a magnetic field is:
Here is the Larmor precession frequency of the dipole for magnetic field and is z Pauli matrix. So the eigenvalues of are and . If the system is perturbed by a weak magnetic field , rotating counterclockwise in x-y plane (normal to ) with angular frequency , so that , then and are not eigenstates of the Hamiltonian, which is modified into
It is inconvenient to deal with a time-dependent hamiltonian. To make time-independent requires a new reference frame rotating with , i.e. rotation operator on , which amounts to basis change in Hilbert space. Using this on Schrödinger's equation, the Hamiltonian becomes:
Writing in the basis of as-
Using this form of the Hamiltonian a new basis is found:
This Hamiltonian is exactly similar to that of a two state system with unperturbed energies and with a perturbation expressed by ; According to Rabi oscillation, starting with state, a dipole in parallel to with energy , the probability that it will transit to state (i.e. it will flip) is
Now consider , i.e. the field oscillates at the same rate the dipole exposed to the field does. That is a case of resonance. Then at specific points in time, namely , the dipole will flip, going to the other energy eigenstate with a 100% probability. When , the probability of change of energy state is small. Therefore, the resonance condition can be used, for instance, to measure the magnetic moment of a dipole or the magnetic field at a point in space.
A special case occurs where a system oscillates between two unstable levels that have the same life time . [1] If atoms are excited at a constant, say n/time, to the first state, some decay and the rest have a probability to transition to the second state, so in the time interval between t and (t + dt) the number of atoms that jump to the second state from the first is , so at time t the number of atoms in the second state is
The rate of decay from state two depends on the number of atoms that were collected in that state from all previous intervals, so the number of atoms in state 2 is ; The rate of decay of atoms from state two is proportional to the number of atoms present in that state, while the constant of proportionality is decay constant . Performing the integration rate of decay of atoms from state two is obtained as:
From this expression many interesting points can be exploited, such
The existence of spin angular momentum of electrons was discovered experimentally by the Stern–Gerlach experiment. In that study a beam of neutral atoms with one electron in the valence shell, carrying no orbital momentum (from the viewpoint of quantum mechanics) was passed through an inhomogeneous magnetic field. This process was not approximate due to the small deflection angle, resulting in considerable uncertainty in the measured value of the split beam.
Rabi's method was an improvement over Stern-Gerlach. As shown in the figure, the source emits a beam of neutral atoms, having spin angular momentum . The beam passes through a series of three aligned magnets. Magnet 1 produces an inhomogeneous magnetic field with a high gradient (as in Stern–Gerlach), so the atoms having 'upward' spin (with ) will deviate downward (path 1), i.e. to the region of less magnetic field B, to minimize energy. Atoms with 'downward' spin with ) will deviate upward similarly (path 2). Beams are passed through slit 1, to reduce any effects of source beyond. Magnet 2 produces only a uniform magnetic field in the vertical direction applying no force on the atomic beam, and magnet 3 is actually inverted magnet 1. In the region between the poles of magnet 3, atoms having 'upward' spin get upward push and atoms having 'downward' spin feel downward push, so their path remains 1 and 2 respectively. These beams pass through a second slit S2, and arrive at detector and get detected.
If a horizontal rotating field , angular frequency of rotation is applied in the region between poles of magnet 2, produced by oscillating current in circular coils then there is a probability for the atoms passing through there from one spin state to another ( and vice versa), when = , Larmor frequency of precession of magnetic moment in B.[ clarification needed ] The atoms that transition from 'upward' to 'downward' spin will experience a downward force while passing through magnet 3, and will follow path 1'. Similarly, atoms that change from 'downward' to 'upward' spin will follow path 2', and these atoms will not reach the detector, causing a minimum in detector count. If angular frequency of is varied continuously, then a minimum in detector current will be obtained (when = ). From this known value of (, where g is 'Landé g factor'), 'Landé g-factor' is obtained which will enable one to have correct value of magnetic moment . This experiment, performed by Isidor Isaac Rabi is more sensitive and accurate compared than Stern-Gerlach.
Spin angular momentum allows magnetic resonance phenomena to be explained via classical physics. When viewed from the reference frame attached to the rotating field, it seems that the magnetic dipole precesses around a net magnetic field , where is the unit vector along uniform magnetic field and is the same in the direction of rotating field and .
Proof of classical expression for precession |
---|
Classical electrodynamics tells us that torque on a magnetic dipole of moment is , so its equation of motion is , (where is the angular momentum associated with dipole) so – For the case under consideration the dipole is under the action of magnetic field and , hence It is easier to solve it by transforming co-ordinate system to OXYZ in which becomes OX axis, in that frame – here Using and , one can see that – so, here effective field becomes : |
So when , a high precession amplitude allows the magnetic moment to be completely flipped. Classical and quantum mechanical predictions correspond well, which can be viewed as an example of the Bohr Correspondence principle, which states that quantum mechanical phenomena, when predicted in classical regime, should match the classical result. The origin of this correspondence is that the evolution of the expected value of magnetic moment is identical to that obtained by classical reasoning. The expectation value of the magnetic moment is . The time evolution of is given by
so,
So, and
which looks exactly similar to the equation of motion of magnetic moment in classical mechanics –
This analogy in the mathematical equation for the evolution of magnetic moment and its expectation value facilitates to understand the phenomena without a background of quantum mechanics.
In magnetic resonance imaging (MRI) the spin angular momentum of the proton is used. The most available source for protons in the human body is represented by hydrogen atoms in water. A strong magnetic field applied to water causes the appearance of two different energy levels for spin angular momentum, and , using .
According to the Boltzmann distribution, as the number of systems having energy out of at temperature is (where is the Boltzmann constant), the lower energy level, associated with spin , is more populated than the other. In the presence of a rotating magnetic field more protons flip from to than the other way, causing absorption of microwave or radio-wave radiation (from the rotating field). When the field is withdrawn, protons tend to re-equilibrate along the Boltzmann distribution, so some of them transition from higher energy levels to lower ones, emitting microwave or radio-wave radiation at specific frequencies.
Instead of nuclear spin, spin angular momentum of unpaired electrons is used in EPR (electron paramagnetic resonance) in order to detect free radicals, etc.
The phenomenon of magnetic resonance is rooted in the existence of spin angular momentum of a quantum system and its specific orientation with respect to an applied magnetic field. Both cases have no explanation in the classical approach and can be understood only by using quantum mechanics. Some people claim[ who? ] that purely quantum phenomena are those that cannot be explained by the classical approach. For example, phenomena in the microscopic domain that can to some extent be described by classical analogy are not really quantum phenomena. Since the basic elements of magnetic resonance have no classical origin, although analogy can be made with classical Larmor precession, MR should be treated as a quantum phenomenon.
In physics, a dipole is an electromagnetic phenomenon which occurs in two ways:
In physics, the Rabi cycle is the cyclic behaviour of a two-level quantum system in the presence of an oscillatory driving field. A great variety of physical processes belonging to the areas of quantum computing, condensed matter, atomic and molecular physics, and nuclear and particle physics can be conveniently studied in terms of two-level quantum mechanical systems, and exhibit Rabi flopping when coupled to an optical driving field. The effect is important in quantum optics, magnetic resonance and quantum computing, and is named after Isidor Isaac Rabi.
In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.
In quantum mechanics, a two-state system is a quantum system that can exist in any quantum superposition of two independent quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit.
In quantum mechanics, the spin–orbit interaction is a relativistic interaction of a particle's spin with its motion inside a potential. A key example of this phenomenon is the spin–orbit interaction leading to shifts in an electron's atomic energy levels, due to electromagnetic interaction between the electron's magnetic dipole, its orbital motion, and the electrostatic field of the positively charged nucleus. This phenomenon is detectable as a splitting of spectral lines, which can be thought of as a Zeeman effect product of two effects: the apparent magnetic field seen from the electron perspective due to special relativity and the magnetic moment of the electron associated with its intrinsic spin due to quantum mechanics.
In magnetic resonance imaging (MRI) and nuclear magnetic resonance spectroscopy (NMR), an observable nuclear spin polarization (magnetization) is created by a homogeneous magnetic field. This field makes the magnetic dipole moments of the sample precess at the resonance (Larmor) frequency of the nuclei. At thermal equilibrium, nuclear spins precess randomly about the direction of the applied field. They become abruptly phase coherent when they are hit by radiofrequency (RF) pulses at the resonant frequency, created orthogonal to the field. The RF pulses cause the population of spin-states to be perturbed from their thermal equilibrium value. The generated transverse magnetization can then induce a signal in an RF coil that can be detected and amplified by an RF receiver. The return of the longitudinal component of the magnetization to its equilibrium value is termed spin-latticerelaxation while the loss of phase-coherence of the spins is termed spin-spin relaxation, which is manifest as an observed free induction decay (FID).
The Rabi problem concerns the response of an atom to an applied harmonic electric field, with an applied frequency very close to the atom's natural frequency. It provides a simple and generally solvable example of light–atom interactions and is named after Isidor Isaac Rabi.
The Rabi frequency is the frequency at which the probability amplitudes of two atomic energy levels fluctuate in an oscillating electromagnetic field. It is proportional to the transition dipole moment of the two levels and to the amplitude of the electromagnetic field. Population transfer between the levels of such a 2-level system illuminated with light exactly resonant with the difference in energy between the two levels will occur at the Rabi frequency; when the incident light is detuned from this energy difference then the population transfer occurs at the generalized Rabi frequency. The Rabi frequency is a semiclassical concept since it treats the atom as an object with quantized energy levels and the electromagnetic field as a continuous wave.
In quantum optics, the Jaynes–Cummings model is a theoretical model that describes the system of a two-level atom interacting with a quantized mode of an optical cavity, with or without the presence of light. It was originally developed to study the interaction of atoms with the quantized electromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity. It is named after Edwin Thompson Jaynes and Fred Cummings in the 1960s and was confirmed experimentally in 1987.
In spectroscopy, the Autler–Townes effect, is a dynamical Stark effect corresponding to the case when an oscillating electric field is tuned in resonance to the transition frequency of a given spectral line, and resulting in a change of the shape of the absorption/emission spectra of that spectral line. The AC Stark effect was discovered in 1955 by American physicists Stanley Autler and Charles Townes.
In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-1/2 particles, which takes into account the interaction of the particle's spin with an external electromagnetic field. It is the non-relativistic limit of the Dirac equation and can be used where particles are moving at speeds much less than the speed of light, so that relativistic effects can be neglected. It was formulated by Wolfgang Pauli in 1927. In its linearized form it is known as Lévy-Leblond equation.
Resonance fluorescence is the process in which a two-level atom system interacts with the quantum electromagnetic field if the field is driven at a frequency near to the natural frequency of the atom.
Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. Spin is quantized, and accurate models for the interaction with spin require relativistic quantum mechanics or quantum field theory.
An electric dipole transition is the dominant effect of an interaction of an electron in an atom with the electromagnetic field.
The Maxwell–Bloch equations, also called the optical Bloch equations describe the dynamics of a two-state quantum system interacting with the electromagnetic mode of an optical resonator. They are analogous to the Bloch equations which describe the motion of the nuclear magnetic moment in an electromagnetic field. The equations can be derived either semiclassically or with the field fully quantized when certain approximations are made.
In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.
Ramsey interferometry, also known as the separated oscillating fields method, is a form of particle interferometry that uses the phenomenon of magnetic resonance to measure transition frequencies of particles. It was developed in 1949 by Norman Ramsey, who built upon the ideas of his mentor, Isidor Isaac Rabi, who initially developed a technique for measuring particle transition frequencies. Ramsey's method is used today in atomic clocks and in the SI definition of the second. Most precision atomic measurements, such as modern atom interferometers and quantum logic gates, have a Ramsey-type configuration. A more modern method, known as Ramsey–Bordé interferometry uses a Ramsey configuration and was developed by French physicist Christian Bordé and is known as the Ramsey–Bordé interferometer. Bordé's main idea was to use atomic recoil to create a beam splitter of different geometries for an atom-wave. The Ramsey–Bordé interferometer specifically uses two pairs of counter-propagating interaction waves, and another method named the "photon-echo" uses two co-propagating pairs of interaction waves.
Electric dipole spin resonance (EDSR) is a method to control the magnetic moments inside a material using quantum mechanical effects like the spin–orbit interaction. Mainly, EDSR allows to flip the orientation of the magnetic moments through the use of electromagnetic radiation at resonant frequencies. EDSR was first proposed by Emmanuel Rashba.
In mathematical physics, the Gordon decomposition of the Dirac current is a splitting of the charge or particle-number current into a part that arises from the motion of the center of mass of the particles and a part that arises from gradients of the spin density. It makes explicit use of the Dirac equation and so it applies only to "on-shell" solutions of the Dirac equation.
In quantum optics, fhe Tavis–Cummings model is a theoretical model to describe an ensemble of identical two-level atoms coupled symmetrically to a single-mode quantized bosonic field. The model extends the Jaynes–Cummings model to larger spin numbers that represent collections of multiple atoms. It differs from the Dicke model in its use of the rotating-wave approximation to conserve the number of excitations of the system.
{{cite book}}
: CS1 maint: multiple names: authors list (link)