Maltose/maltodextrin-binding periplasmic protein | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Organism | |||||||
Symbol | MalE | ||||||
UniProt | P0AEX9 | ||||||
|
Maltose-binding protein (MBP) is a part of the maltose/maltodextrin system of Escherichia coli , which is responsible for the uptake and efficient catabolism of maltodextrins. It is a complex regulatory and transport system involving many proteins and protein complexes. MBP has an approximate molecular mass of 42.5 kilodaltons.
MBP is encoded by the malE gene of Escherichia coli. The malE gene codes for a precursor polypeptide (396 amino acid residues) which yields the mature MBP (370 residues) upon cleavage of the NH2-terminal extension (26 residues). The precursor and mature forms of MBP do not contain any cysteine residues. [2]
MBP is a monomeric protein. Crystal structures have shown that MBP is divided into two distinct globular domains that are connected by three short polypeptide segments. The two domains are separated by a deep groove that contains the maltose/maltodextrin binding site. Comparison of the structures of the liganded and unliganded forms of MBP has shown that the binding of maltose induces a major conformational change that closes the groove by a rigid motion of the two domains around the linking polypeptide hinge. [3] [4]
Both precursor and mature forms of MBP are functional for the binding of maltose. [5] The NH2-terminal extension decreases the folding rate of the precursor form of MBP relative to its mature form by at least 5 fold, but it has no effect on the unfolding rate. [6] [7] The equilibrium unfolding of MBP can be modelled by a two-state mechanism with a stability ∆G(H2O) equal to 9.45 kcal mol−1 at 25 °C, pH 7.6. [8]
MBP is exported into the periplasmic space of E. coli. [9] The NH2-terminal extension of MBP, also termed signal peptide, has two roles: (i) it slows down folding of the newly synthesized polypeptide, and (ii) it directs this polypeptide to the membrane and SecYEG translocon. Once folded, the precursor can no longer enter the translocation pathway. [10] The introduction of a charged amino-acid residue or a proline residue within the hydrophobic core of the signal peptide is sufficient to block export. [11] The defective exports of the mutant MBPs are consistent with the alpha-helical conformation and hydrophobic interactions of the signal peptide in its interaction with the translocon motor protein SecA. [12] [13] [14]
The malE gene, coding for MBP, belongs to the Mal regulon of E. coli, which consists of ten genes whose products are geared for the efficient uptake and utilization of maltose and maltodextrins. All the gene involved in the transport of maltose/maltodextrin, including malE, are clustered in the malB region of E. coli and organized in two divergent operons: malE-malF-malG and malK-lamB. [15] The transcription start sites at the malEp and malKp promoters are distant of 271 base pairs. [16]
The malEp and malKp promoters are synergistically activated by protein MalT, the activator of the Mal regulon and by the cAMP receptor protein CRP. This activation is a coupled process that involves, going from malEp towards malKp: two MalT binding sites; three CRP binding site, and two overlapping sets of three MalT binding sites, staggered by three base pairs. [16] [17] [18] Transcription activation requires the binding of adenosine triphosphate (ATP) and maltotriose to MalT and the binding of cyclic AMP to the dimer of CRP. [19] The unliganded form of MalT is monomeric whereas its liganded form, in the presence of ATP and maltotriose, is oligomeric. [20]
MBP is used to increase the solubility of recombinant proteins expressed in E. coli. In these systems, the protein of interest is often expressed as a MBP-fusion protein, preventing aggregation of the protein of interest. The mechanism by which MBP increases solubility is not well understood. In addition, MBP can itself be used as an affinity tag for purification of recombinant proteins. The fusion protein binds to amylose columns while all other proteins flow through. The MBP-protein fusion can be purified by eluting the column with maltose. Once the fusion protein is obtained in purified form, the protein of interest is often cleaved from MBP with a specific protease and can then be separated from MBP by affinity chromatography.
A first study of the relations between structure and functions of MBP was performed by random insertion of a short DNA fragment, coding for a BamHI restriction site, into the malE gene. Some of the insertions affected the functions of MBP whereas others were permissive. [21] [22] The permissive sites that were internal to MBP, were used to insert antigenic peptides and challenge the immune response in mice. [23] The 3'-OH terminal insertions were used to create fusion proteins and develop the use of MBP as an affinity handle for the purification of foreign proteins and peptides by affinity chromatography on cross-linked amylose and elution with maltose in mild physico-chemical conditions. [24] [25] Several plasmid vectors were developed to facilitate the expression and purification of such fusion proteins. [26]
When the recombinant MBP includes a signal peptide, the fusion protein can be exported into the periplasmic space, which facilitate its purification since the periplasmic fluid contains only a limited number of proteins and can be recovered either by an osmotic shock or by permeabilization of the bacterial outer membrane with antibiotics such as Polymyxin B. Such an export of the fusion protein into the periplasmic space enables the formation of disulfide bonds in the passenger protein, for example antibody fragments. [27] [28] Foreign proteins that are exported or secreted in their native organism, can usually be exported into the E. coli periplasm by fusion with MBP. Examples of cytoplasmic proteins that could be exported by fusion with MBP, include the monomeric Klenow polymerase and the dimeric Gene V protein of phage M13. [24] [29] When the recombinant MBP includes either a defective or no signal peptide the fusion protein remains within the bacterial cytoplasm from where it can be recovered by breaking open the cells.
The fusion of proteins with MBP usually enhances their solubility and facilitates their proper folding so that the fusion proteins are most often bifunctional. [24] [30] In addition, such fusions can facilitate the crystallisation of difficult proteins, e.g. membrane proteins. The crystallized protein can often have their structures solved by X-ray crystallography using molecular replacement on a known MBP structure. [31]
Proteolysis is the breakdown of proteins into smaller polypeptides or amino acids. Uncatalysed, the hydrolysis of peptide bonds is extremely slow, taking hundreds of years. Proteolysis is typically catalysed by cellular enzymes called proteases, but may also occur by intra-molecular digestion.
Protein production is the biotechnological process of generating a specific protein. It is typically achieved by the manipulation of gene expression in an organism such that it expresses large amounts of a recombinant gene. This includes the transcription of the recombinant DNA to messenger RNA (mRNA), the translation of mRNA into polypeptide chains, which are ultimately folded into functional proteins and may be targeted to specific subcellular or extracellular locations.
A polyhistidine-tag, best known by the trademarked name His-tag, is an amino acid motif in proteins that typically consists of at least six histidine (His) residues, often at the N- or C-terminus of the protein. It is also known as a hexa histidine-tag, 6xHis-tag, or His6 tag. The tag was invented by Roche, although the use of histidines and its vectors are distributed by Qiagen. Various purification kits for histidine-tagged proteins are commercially available from multiple companies.
An expression vector, otherwise known as an expression construct, is usually a plasmid or virus designed for gene expression in cells. The vector is used to introduce a specific gene into a target cell, and can commandeer the cell's mechanism for protein synthesis to produce the protein encoded by the gene. Expression vectors are the basic tools in biotechnology for the production of proteins.
MBP or mbp may refer to:
The ATP-binding cassette transporters are a transport system superfamily that is one of the largest and possibly one of the oldest gene families. It is represented in all extant phyla, from prokaryotes to humans. ABC transporters belong to translocases.
A tetrameric protein is a protein with a quaternary structure of four subunits (tetrameric). Homotetramers have four identical subunits, and heterotetramers are complexes of different subunits. A tetramer can be assembled as dimer of dimers with two homodimer subunits, or two heterodimer subunits.
Protein tags are peptide sequences genetically grafted onto a recombinant protein. Tags are attached to proteins for various purposes. They can be added to either end of the target protein, so they are either C-terminus or N-terminus specific or are both C-terminus and N-terminus specific. Some tags are also inserted at sites within the protein of interest; they are known as internal tags.
The pelB leader sequence is a sequence of amino acids which, when attached to a protein, directs the protein to the bacterial periplasm, where the sequence is removed by a signal peptidase. Specifically, pelB refers to pectate lyase B of Erwinia carotovora CE. The leader sequence consists of the 22 N-terminal amino acid residues. This leader sequence can be attached to any other protein resulting in a transfer of such a fused protein to the periplasmic space of Gram-negative bacteria, such as Escherichia coli, often used in genetic engineering. Protein secretion can increase the stability of cloned gene products. For instance it was shown that the half-life of the recombinant proinsulin is increased 10-fold when the protein is secreted to the periplasmic space.
Bacterial display is a protein engineering technique used for in vitro protein evolution. Libraries of polypeptides displayed on the surface of bacteria can be screened using flow cytometry or iterative selection procedures (biopanning). This protein engineering technique allows us to link the function of a protein with the gene that encodes it. Bacterial display can be used to find target proteins with desired properties and can be used to make affinity ligands which are cell-specific. This system can be used in many applications including the creation of novel vaccines, the identification of enzyme substrates and finding the affinity of a ligand for its target protein.
The gene rpoS encodes the sigma factor sigma-38, a 37.8 kD protein in Escherichia coli. Sigma factors are proteins that regulate transcription in bacteria. Sigma factors can be activated in response to different environmental conditions. rpoS is transcribed in late exponential phase, and RpoS is the primary regulator of stationary phase genes. RpoS is a central regulator of the general stress response and operates in both a retroactive and a proactive manner: it not only allows the cell to survive environmental challenges, but it also prepares the cell for subsequent stresses (cross-protection). The transcriptional regulator CsgD is central to biofilm formation, controlling the expression of the curli structural and export proteins, and the diguanylate cyclase, adrA, which indirectly activates cellulose production. The rpoS gene most likely originated in the gammaproteobacteria.
EF-Tu is a prokaryotic elongation factor responsible for catalyzing the binding of an aminoacyl-tRNA (aa-tRNA) to the ribosome. It is a G-protein, and facilitates the selection and binding of an aa-tRNA to the A-site of the ribosome. As a reflection of its crucial role in translation, EF-Tu is one of the most abundant and highly conserved proteins in prokaryotes. It is found in eukaryotic mitochondria as TUFM.
cAMP receptor protein is a regulatory protein in bacteria. CRP protein binds cAMP, which causes a conformational change that allows CRP to bind tightly to a specific DNA site in the promoters of the genes it controls. CRP then activates transcription through direct protein–protein interactions with RNA polymerase.
Fusion proteins or chimeric (kī-ˈmir-ik) proteins are proteins created through the joining of two or more genes that originally coded for separate proteins. Translation of this fusion gene results in a single or multiple polypeptides with functional properties derived from each of the original proteins. Recombinant fusion proteins are created artificially by recombinant DNA technology for use in biological research or therapeutics. Chimeric or chimera usually designate hybrid proteins made of polypeptides having different functions or physico-chemical patterns. Chimeric mutant proteins occur naturally when a complex mutation, such as a chromosomal translocation, tandem duplication, or retrotransposition creates a novel coding sequence containing parts of the coding sequences from two different genes. Naturally occurring fusion proteins are commonly found in cancer cells, where they may function as oncoproteins. The bcr-abl fusion protein is a well-known example of an oncogenic fusion protein, and is considered to be the primary oncogenic driver of chronic myelogenous leukemia.
Tyrosine—tRNA ligase, also known as tyrosyl-tRNA synthetase is an enzyme that is encoded by the gene YARS. Tyrosine—tRNA ligase catalyzes the chemical reaction
In enzymology, a maltose-transporting ATPase (EC 3.6.3.19) is an enzyme that catalyzes the chemical reaction
MS2 tagging is a technique based upon the natural interaction of the MS2 bacteriophage coat protein with a stem-loop structure from the phage genome, which is used for biochemical purification of RNA-protein complexes and partnered to GFP for detection of RNA in living cells. More recently, the technique has been used to monitor the appearance of RNA in living cells, at the site of transcription, or simply by observing the changes in RNA number in the cytoplasm. This has revealed that transcription of both prokaryotic and eukaryotic genes occurs in a discontinuous fashion with bursts of transcription separated by irregular intervals.
The methyl-accepting chemotaxis proteins are a family of transmembrane receptors that mediate chemotactic response in certain enteric bacteria, such as Salmonella enterica enterica and Escherichia coli. These methyl-accepting chemotaxis receptors are one of the first components in the sensory excitation and adaptation responses in bacteria, which act to alter swimming behaviour upon detection of specific chemicals. Use of the MCP allows bacteria to detect concentrations of molecules in the extracellular matrix so that the bacteria may smooth swim or tumble accordingly. If the bacterium detects rising levels of attractants (nutrients) or declining levels of repellents (toxins), the bacterium will continue swimming forward, or smooth swimming. If the bacterium detects declining levels of attractants or rising levels of repellents, the bacterium will tumble and re-orient itself in a new direction. In this manner, a bacterium may swim towards nutrients and away from toxins
In bacterial genetics, the mal regulon is a regulon - or group of genes under common regulation - associated with the catabolism of maltose and maltodextrins. The system is especially well characterized in the model organism Escherichia coli, where it is classically described as a group of ten genes in multiple operons whose expression is regulated by a single regulatory protein, malT. MalT binds to maltose or maltodextrin and undergoes a conformational change that allows it to bind DNA at sequences near the promoters of genes required for uptake and catabolism of these sugars. The maltose regulation system in E. coli is a classic example of positive regulation. malT is regulated by catabolite repression via the catabolite activator protein. Genes under the control of malT include ATP-binding cassette transporter components, maltoporin, maltose binding protein, and several enzymes. Other Gram-negative bacteria such as Klebsiella pneumoniae have additional genes under the control of malT.
In the medical field of immunology, nanoCLAMP affinity reagents are recombinant 15 kD antibody mimetic proteins selected for tight, selective and gently reversible binding to target molecules. The nanoCLAMP scaffold is based on an IgG-like, thermostable carbohydrate binding module family 32 (CBM32) from a Clostridium perfringens hyaluronidase. The shape of nanoCLAMPs approximates a cylinder of approximately 4 nm in length and 2.5 nm in diameter, roughly the same size as a nanobody. nanoCLAMPs to specific targets are generated by varying the amino acid sequences and sometimes the length of three solvent exposed, adjacent loops that connect the beta strands making up the beta-sandwich fold, conferring binding affinity and specificity for the target.