Mansonella ozzardi

Last updated

Mansonella ozzardi
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Nematoda
Class: Chromadorea
Order: Rhabditida
Family: Onchocercidae
Genus: Mansonella
Species:
M. ozzardi
Binomial name
Mansonella ozzardi
Manson, 1897

Mansonella ozzardi is a filarial (arthropod-borne) nematode (roundworm). This filarial nematode is one of two that causes serous cavity filariasis in humans. The other filarial nematode that causes it in humans is Mansonella perstans . M. ozzardi is an endoparasite that inhabits the serous cavity of the abdomen in the human host. It lives within the mesenteries, peritoneum, and in the subcutaneous tissue.

Contents

Morphology

Like other nematodes, M. ozzardi is a cylindrical and bilaterally symmetrical worm, with a pseudocoel, or a false body cavity. The exterior of the parasite, the cuticle, is a protective layer that can withstand the harsh environment in the digestive tracts of the human hosts.

Mansonella ozzardi and other nematodes have longitudinal muscles that run along the body wall. They also have dorsal, ventral, and longitudinal nerve cords connected to these longitudinal muscles.

In the adult stages of M. ozzardi, the females are larger than the males.

Mansonella ozzardi is usually smaller than those Onchocerca Volvulus (that causes human onchocerciasis) when both species co-exist; especially in some rural areas in Brazil, within the Amazonian onchocerciasis focus.

M. ozzardi microfilariae from a thick blood smear: The sample was stained with Giemsa solution for easier visualization under the microscope. M. ozzardi.jpg
M. ozzardi microfilariae from a thick blood smear: The sample was stained with Giemsa solution for easier visualization under the microscope.

Reproduction

This is a dioecious species; the female is believed to release a pheromone to attract males. [1] When the male finds the female, he will coil around the female over the genital pore. The male's spicules are used to hold the female during copulation. The females are ovoviviparous. The sperm of a nematode lacks a flagellum. Its motility is due to its amoeboid-type cell.

Geographic range

This is a New World parasite. It is prominent in the subtropical, tropical, and temperate regions of Central and South America (Mexico, Panama, Brazil, Colombia, and Argentina), and the Caribbean. [2] The prevalence of M. ozzardi in Brazil is very high; about 44–52% of Brazilian farmers are infected. It is also prevalent with the American Indian population. Many transmission hotspots in the Amazon Basin map to indigenous communities. Endemicity levels vary widely among rural villages, situated a few kilometers apart along the same rivers in the western Amazon Basin of Brazil. [3]

Lifecycle

  1. An arthropod (black fly or biting midge) will take a blood meal from a human and will insert its third-stage filarial larvae into the human host.
  2. The larvae will then become adults and will inhabit the peritoneal spaces and adjacent locations.
  3. The adults will mate and produce unsheathed microfilariae. These microfilariae will go to the bloodstream.
  4. An arthropod will take a blood meal from an infected human and ingest the microfilariae.
  5. In the arthropod, the microfilariae will travel from the midgut to the thoracic muscles.
  6. In the thoracic muscles, the microfilariae will develop into the first-stage larvae.
  7. Later, the microfilariae will further develop into the third-stage larvae.
  8. The third-stage larvae will travel from the thoracic muscles to the arthropod's proboscis. This is the stage where the arthropod can infect a human when it takes a blood meal.
Mansonella ozzardi Life Cycle.gif

Transmission

Mansonella ozzardi is transmitted by two types of arthropods that feed on the blood of humans: biting midges (genus Culicoides ) and blackflies (genus Simulium ). In the Caribbean, M. ozzardi uses the biting midge as its intermediate host. The black fly serves as the intermediate host for the filariae parasite in the Amazon Basin and mainland South America.

Biting midge

Biting midge Biting Midge.jpg
Biting midge

The biting midges are small flies that breed on sandy beaches near the sea. Some species also lay their eggs on decaying leaf litter, humus, manure, and partially rotten vegetation, in tree holes, and the cut stumps of banana trees. They feed on the blood of mammals, birds, reptiles, and humans. Their short mouthparts prohibit them from biting through clothing. As a result, they prefer to feed on the head or other exposed body parts. Blood meals occur throughout the day and night, but biting activity peaks during the early evening. Since individual bites can be painful, they are a cause of concern because they tend to attack in swarms of hundreds or thousands. Due to their small size, they can pass through mesh mosquito nets.

Black fly

Black fly Black Fly.png
Black fly

The blackflies are larger blood-sucking flies that breed in fast-flowing streams and rivers. Their larvae can be found attached to submerged vegetation and stones of infected waterways. Blood meals occur during the day in the outdoors, especially along riverbeds. After a meal, the flies rest for 2–3 days on trees and other vegetation to digest the blood. Like the biting midges, blackflies attack their victims in swarms and their bites are painful. The bites may cause swelling, inflammation, and irritation that may last for weeks. [4]

Pathology

Symptoms

The pathogenicity of M. ozzardi needs further research. Although the adult worms live in the body cavities and the mesentery, they do cause clinical manifestations to their human hosts.

  1. Moderate fever
  2. Coldness in the legs
  3. Joint pains, like articular pain or arthralgias
  4. Headaches
  5. Pruritus (itchiness)
  6. Skin eruptions
  7. Pulmonary symptoms
  8. Lymphadenitis - inflammation of the lymph nodes
  9. Adenopathy - enlargement of the lymph nodes
  10. Hepatomegaly - enlargement of the liver
  11. Calabar like swellings that radiate out from core [10]

Mansonella ozzardi is also considered as a possible cause for corneal lesions. Even though there is no significant evidence for it, but in certain regions in Central and South America where both M. ozzardi and O. volvulus co-occur, skin biopsies have always showed that onchoserciasis is the cause for corneal lesions.

Diagnosis

Microscopic examination is the most practical diagnostic tool used to identify the M. ozzardi microfilariae in blood samples from infected patients. Blood smears are usually stained with haematoxylin or Giemsa to visualize the worms under the microscope. [5]

Diagnosticians must not rely entirely on blood samples, since microfilariae have also been detected in the skin. Ultrasound may be used to detect the presence of the adult worms. Researchers are currently developing a polymerase chain reaction-based method of detecting the parasites in skin biopsies. [6]

Because M. ozzardi harbors the endosymbiotic bacteria Wolbachia , doxycycline may be an effective therapy to eliminate adult worms. However, no trials with doxycycline (either alone or in combination with ivermectin) have been conducted for M. ozzardi infection.[ citation needed ]

Treatment

Ivermectin is the treatment of choice for M. ozzardi infections. It is a potent macrocyclic lactone that binds to chloride channels, which then open and allow chloride ions to enter the affected cells. These cells hyperpolarize, resulting in muscle paralysis in the M. ozzardi microfilariae. This allows host immune cells to adhere to the microfilariae surface and facilitate their elimination. Ivermectin is unable to kill the adult worms. [7]

Diethylcarbamazine (DEC) also has been used in treating filarial infections. While DEC works well against many filarial parasites, it is not effective in treating M. ozzardi microfilarial infections. [8]

Disease control

Aside from ivermectin, preventive measures can be taken by individuals living in areas endemic to M. ozzardi. Since biting midges cannot bite through clothing, those living in the Caribbean should wear long-sleeved shirts and pants to decrease the body parts exposed. Insect repellents could also be used to cover body parts not protected by clothing. [9] Communities should also maintain the natural vegetation around them to decrease the possible breeding grounds for the biting midges.

In South America, the best way to control the population of blackflies, and the transmission of M. ozzardi, is to apply insecticides specific for blackfly larvae to streams and rivers. Application of insecticide to a specific breeding site also kills larvae in breeding sites up to 10 km downstream. Extensive networks of waterways must be treated with insecticide since blackflies have the ability to fly with the wind for several hundreds of kilometers. Individuals should also avoid the waterways whenever possible.

Related Research Articles

<i>Loa loa</i> filariasis Medical condition

Loa loa filariasis, (Loiasis) is a skin and eye disease caused by the nematode worm Loa loa. Humans contract this disease through the bite of a deer fly or mango fly, the vectors for Loa loa. The adult Loa loa filarial worm can reach from three to seven centimetres long and migrates throughout the subcutaneous tissues of humans, occasionally crossing into subconjunctival tissues of the eye where it can be easily observed. Loa loa does not normally affect vision but can be painful when moving about the eyeball or across the bridge of the nose. Loiasis can cause red itchy swellings below the skin called "Calabar swellings". The disease is treated with the drug diethylcarbamazine (DEC), and when appropriate, surgical methods may be employed to remove adult worms from the conjunctiva. Loiasis belongs to the group of neglected tropical diseases, and there is a call for it to be included in the high priority listing.

<i>Loa loa</i> Species of roundworm

Loa loa is a filarial (arthropod-borne) nematode (roundworm) that causes Loa loa filariasis. Loa loa actually means "worm worm", but is commonly known as the "eye worm", as it localizes to the conjunctiva of the eye. Loa loa is commonly found in Africa. It mainly inhabits rain forests in West Africa and has native origins in Ethiopia. The disease caused by Loa loa is called loiasis and is one of the neglected tropical diseases.

<span class="mw-page-title-main">Onchocerciasis</span> Human helminthiasis (infection by parasite)

Onchocerciasis, also known as river blindness, is a disease caused by infection with the parasitic worm Onchocerca volvulus. Symptoms include severe itching, bumps under the skin, and blindness. It is the second-most common cause of blindness due to infection, after trachoma.

<span class="mw-page-title-main">Filariasis</span> Parasitic disease caused by a family of nematode worms

Filariasis, is a filarial infection caused by parasitic nematodes (roundworms) spread by different vectors. They are included in the list of neglected tropical diseases.

<i>Wuchereria bancrofti</i> Species of parasitic worm

Wuchereria bancrofti is a filarial (arthropod-borne) nematode (roundworm) that is the major cause of lymphatic filariasis. It is one of the three parasitic worms, together with Brugia malayi and B. timori, that infect the lymphatic system to cause lymphatic filariasis. These filarial worms are spread by a variety of mosquito vector species. W. bancrofti is the most prevalent of the three and affects over 120 million people, primarily in Central Africa and the Nile delta, South and Central America, the tropical regions of Asia including southern China, and the Pacific islands. If left untreated, the infection can develop into lymphatic filariasis. In rare conditions, it also causes tropical pulmonary eosinophilia. No vaccine is commercially available, but high rates of cure have been achieved with various antifilarial regimens, and lymphatic filariasis is the target of the World Health Organization Global Program to Eliminate Lymphatic Filariasis with the aim to eradicate the disease as a public-health problem by 2020. However, this goal was not met by 2020.

<i>Brugia malayi</i> Species of filarial nematode

Brugia malayi is a filarial (arthropod-borne) nematode (roundworm), one of the three causative agents of lymphatic filariasis in humans. Lymphatic filariasis, also known as elephantiasis, is a condition characterized by swelling of the lower limbs. The two other filarial causes of lymphatic filariasis are Wuchereria bancrofti and Brugia timori, which both differ from B. malayi morphologically, symptomatically, and in geographical extent.

<i>Onchocerca volvulus</i> Nematode

Onchocerca volvulus is a filarial (arthropod-borne) nematode (roundworm) that causes onchocerciasis, and is the second-leading cause of blindness due to infection worldwide after trachoma. It is one of the 20 neglected tropical diseases listed by the World Health Organization, with elimination from certain countries expected by 2025.

Brugia pahangi is a parasitic roundworm belonging to the genus Brugia. It is a filarial nematode known to infect the lymph vessels of domestic cats and wild animals, causing a disease filariasis.

Acanthocheilonema is a genus within the family Onchocercidae which comprises mainly tropical parasitic worms. Cobbold created the genus Acanthocheilonema with only one species, Acanthocheilonema dracunculoides, which was collected from aardwolf in the region of South Africa in the nineteenth century. These parasites have a wide range of mammalian species as hosts, including members of Carnivora, Macroscelidea, Rodentia, Pholidota, Edentata, and Marsupialia. Many species among several genera of filarioids exhibit a high degree of endemicity in studies done on mammalian species in Japan. However, no concrete evidence has confirmed any endemic species in the genus Acanthocheilonema.

Acanthocheilonemiasis is a rare tropical infectious disease caused by a parasite known as Acanthocheilonema perstans. It can cause skin rashes, abdominal and chest pains, muscle and joint pains, neurological disorders and skin lumps. It is mainly found in Africa. The parasite is transmitted through the bite of small flies. Studies show that there are elevated levels of white blood cells.

<span class="mw-page-title-main">Lymphatic filariasis</span> Medical condition

Lymphatic filariasis is a human disease caused by parasitic worms known as filarial worms. Usually acquired in childhood, it is a leading cause of permanent disability worldwide, impacting over a hundred million people and manifesting itself in a variety of severe clinical pathologies While most cases have no symptoms, some people develop a syndrome called elephantiasis, which is marked by severe swelling in the arms, legs, breasts, or genitals. The skin may become thicker as well, and the condition may become painful. Affected people are often unable to work and are often shunned or rejected by others because of their disfigurement and disability.

In population ecology, density-dependent processes occur when population growth rates are regulated by the density of a population. This article will focus on density dependence in the context of macroparasite life cycles.

<i>Mansonella perstans</i> Species of roundworm

Mansonella perstans is a filarial (arthropod-borne) nematode (roundworm), transmitted by tiny blood-sucking flies called midges. Mansonella perstans is one of two filarial nematodes that causes serous cavity filariasis in humans. The other filarial nematode is Mansonella ozzardi. M. perstans is widespread in many parts of sub-Saharan Africa, parts of Central and South America, and the Caribbean.

Mansonelliasis is the condition of infection by the nematode Mansonella. The disease exists in Africa and tropical Americas, spread by biting midges or blackflies. It is usually asymptomatic.

<i>Brugia timori</i> Species of filarial nematode

Brugia timori is a filarial (arthropod-borne) nematode (roundworm) which causes the disease "Timor filariasis", or "Timorian filariasis". While this disease was first described in 1965, the identity of Brugia timori as the causative agent was not known until 1977. In that same year, Anopheles barbirostris was shown to be its primary vector. There is no known animal reservoir host.

<span class="mw-page-title-main">Microfilaria</span> Early stage in the life cycle of certain parasitic nematodes in the family Onchocercidae

The microfilaria is an early stage in the life cycle of certain parasitic nematodes in the family Onchocercidae. In these species, the adults live in a tissue or the circulatory system of vertebrates. They release microfilariae into the bloodstream of the vertebrate host. The microfilariae are taken up by blood-feeding arthropod vectors. In the intermediate host the microfilariae develop into infective larvae that can be transmitted to a new vertebrate host.

<i>Dirofilaria repens</i> Species of roundworm

Dirofilaria repens is a filarial nematode that affects dogs and other carnivores such as cats, wolves, coyotes, foxes, and sea lions, as well as muskrats. It is transmitted by mosquitoes. Although humans may become infected as aberrant hosts, the worms fail to reach adulthood while infecting a human body.

<span class="mw-page-title-main">Filarioidea</span> Superfamily of roundworms

The Filarioidea are a superfamily of highly specialised parasitic nematodes. Species within this superfamily are known as filarial worms or filariae. Infections with parasitic filarial worms cause disease conditions generically known as filariasis. Drugs against these worms are known as filaricides.

Mansonella streptocerca is a filarial (arthropod-borne) nematode (roundworm) causing the disease streptocerciasis. It is a common parasite in the skin of humans in the rain forests of Africa, where it is thought to be a parasite of non-human primates, as well.

<i>Mansonella</i> Genus of roundworms

Mansonella is a genus of parasitic nematodes. It includes three species that are responsible for the disease mansonelliasis: Mansonella ozzardi, M. perstans, and M. streptocerca. A potential fourth species has been identified in Gabon in 2015 and proposed as a new species Mansonella sp. "DEUX". Whole-genome sequences from Mansonella perstans, Mansonella ozzardi, and the newly proposed species Mansonella sp. "DEUX" have been assembled.

References

  1. Prior, J. "Mansonella ozzardi." Animal Diversity Web. 2003. <http://animaldiversity.ummz.umich.edu/site/accounts/information/Mansonella_ozzardi.html> (17 May 2009).
  2. Medeiros, J. F. et al. 2009. Mansonella ozzardi in Brazil: Prevalence of Infection in Riverine Communities in the Purus Region, in the State of Amazonas. Memórias do Instituto Oswaldo Cruz31: 169-177
  3. Rozendaal, J. A. 1997. Vector Control: Methods for Use by Individuals and Communities. World Health Organization, Geneva, Switzerland, 412 p.
  4. Rozendaal, J. A. 1997. Vector Control: Methods for Use by Individuals and Communities. World Health Organization, Geneva, Switzerland, 412 p.
  5. World Health Organization. “Bench Aids for the Diagnosis of Filarial Infections.” 1997. <http://www.dpd.cdc.gov/dpdx/HTML/PDF_Files/Mansonella_benchaid_who.pdf> (16 May 2009).
  6. Ewert, A. et al. 1981. Microfilariae of Mansonella ozzardi in Human Skin Biopsies. American Journal of Tropical Medicine and Hygiene30: 988-991.
  7. Richard-Lenoble, Dominique et al. 2003. Ivermectin and Filariasis. 17: 199-203.
  8. Bartholomew, C. F. et al. 1978. The Failure of Diethylcarbamazin in the Treatment of Mansonella ozzardi Infections. Transactions of the Royal Society of Tropical Medicine and Hygiene72: 423-424.
  9. Rozendaal, J. A. 1997. Vector Control: Methods for Use by Individuals and Communities. World Health Organization, Geneva, Switzerland, 412 p.