Methylenetetrahydromethanopterin dehydrogenase

Last updated
methylenetetrahydromethanopterin dehydrogenase
Identifiers
EC no. 1.5.98.1
CAS no. 100357-01-5
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a methylenetetrahydromethanopterin dehydrogenase (EC 1.5.98.1) is an enzyme that catalyzes the chemical reaction

5,10-methylenetetrahydromethanopterin + coenzyme F420 5,10-methenyltetrahydromethanopterin + reduced coenzyme F420

Thus, the two substrates of this enzyme are 5,10-methylenetetrahydromethanopterin and coenzyme F420, whereas its two products are 5,10-methenyltetrahydromethanopterin and reduced coenzyme F420.

This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-NH group of donors with other acceptors. The systematic name of this enzyme class is 5,10-methylenetetrahydromethanopterin:coenzyme-F420 oxidoreductase. Other names in common use include N5,N10-methylenetetrahydromethanopterin dehydrogenase, and 5,10-methylenetetrahydromethanopterin dehydrogenase. This enzyme participates in folate biosynthesis.

Structural studies

As of late 2007, 4 structures have been solved for this class of enzymes, with PDB accession codes 1QV9, 1U6I, 1U6J, and 1U6K.

Related Research Articles

Methanogens are microorganisms that produce methane as a metabolic byproduct in hypoxic conditions. They are prokaryotic and belong to the domain Archaea. All known methanogens are members of the archaeal phylum Euryarchaeota. Methanogens are common in wetlands, where they are responsible for marsh gas, and can occur in the digestive tracts of animals including ruminants and humans, where they are responsible for the methane content of belching and flatulence. In marine sediments, the biological production of methane, termed methanogenesis, is generally confined to where sulfates are depleted below the top layers. Methanogenic archaea populations play an indispensable role in anaerobic wastewater treatments. Other methanogens are extremophiles, found in environments such as hot springs and submarine hydrothermal vents as well as in the "solid" rock of Earth's crust, kilometers below the surface.

In enzymology, sarcosine dehydrogenase (EC 1.5.8.3) is a mitochondrial enzyme that catalyzes the chemical reaction N-demethylation of sarcosine to give glycine. This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-NH group of donor with other acceptors. The systematic name of this enzyme class is sarcosine:acceptor oxidoreductase (demethylating). Other names in common use include sarcosine N-demethylase, monomethylglycine dehydrogenase, and sarcosine:(acceptor) oxidoreductase (demethylating). Sarcosine dehydrogenase is closely related to dimethylglycine dehydrogenase, which catalyzes the demethylation reaction of dimethylglycine to sarcosine. Both sarcosine dehydrogenase and dimethylglycine dehydrogenase use FAD as a cofactor. Sarcosine dehydrogenase is linked by electron-transferring flavoprotein (ETF) to the respiratory redox chain. The general chemical reaction catalyzed by sarcosine dehydrogenase is:

In enzymology, a 1,3-propanediol dehydrogenase (EC 1.1.1.202) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">3-hydroxyacyl-CoA dehydrogenase</span> Enzyme

In enzymology, a 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) is an enzyme that catalyzes the chemical reaction

In enzymology, a (R)-2-hydroxyacid dehydrogenase (EC 1.1.1.272) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Acyl-CoA dehydrogenase (NADP+)</span> Class of enzymes

In enzymology, an acyl-CoA dehydrogenase (NADP+) (EC 1.3.1.8) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Isovaleryl-CoA dehydrogenase</span>

In enzymology, an isovaleryl-CoA dehydrogenase is an enzyme that catalyzes the chemical reaction

In enzymology, an alcohol dehydrogenase (acceptor) (EC 1.1.99.8) is an enzyme that catalyzes the chemical reaction

In enzymology, a D-2-hydroxy-acid dehydrogenase is an enzyme that catalyzes the chemical reaction

In enzymology, a malate dehydrogenase (quinone) (EC 1.1.5.4), formerly malate dehydrogenase (acceptor) (EC 1.1.99.16), is an enzyme that catalyzes the chemical reaction

In enzymology, a coenzyme F420 hydrogenase (EC 1.12.98.1) is an enzyme that catalyzes the chemical reaction

In enzymology, a 5,10-methylenetetrahydromethanopterin reductase (EC 1.5.98.2) is an enzyme that catalyzes the chemical reaction

In enzymology, a CoA-glutathione reductase (EC 1.8.1.10) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Methylenetetrahydrofolate dehydrogenase (NADP+)</span>

In enzymology, a methylenetetrahydrofolate dehydrogenase (NADP+) (EC 1.5.1.5) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">NAD(P)H dehydrogenase (quinone)</span>

In enzymology, a NAD(P)H dehydrogenase (quinone) (EC 1.6.5.2) is an enzyme that catalyzes the chemical reaction

Coenzyme F<sub>420</sub> Chemical compound

Coenzyme F420 or 8-hydroxy-5-deazaflavin is a coenzyme (sometimes called a cofactor) involved in redox reactions in methanogens, in many Actinomycetota, and sporadically in other bacterial lineages. It is a flavin derivative with an absorption maximum at 420 nm—hence its name. The coenzyme is a substrate for coenzyme F420 hydrogenase, 5,10-methylenetetrahydromethanopterin reductase and methylenetetrahydromethanopterin dehydrogenase.

<span class="mw-page-title-main">Methenyltetrahydromethanopterin cyclohydrolase</span>

In enzymology, a methenyltetrahydromethanopterin cyclohydrolase (EC 3.5.4.27) is an enzyme that catalyzes the chemical reaction

Glucose-6-phosphate dehydrogenase (coenzyme-F420) is an enzyme with systematic name D-glucose-6-phosphate:F420 1-oxidoreductase. This enzyme catalyses the following chemical reaction

8-Hydroxy-5-deazaflavin:NADPH oxidoreductase (EC 1.5.1.40, 8-OH-5dFl:NADPH oxidoreductase) is an enzyme with systematic name reduced coenzyme F420:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">NADH:ubiquinone reductase (non-electrogenic)</span> Class of enzymes

NADH:ubiquinone reductase (non-electrogenic) (EC 1.6.5.9, NDH-2, ubiquinone reductase, coenzyme Q reductase, dihydronicotinamide adenine dinucleotide-coenzyme Q reductase, DPNH-coenzyme Q reductase, DPNH-ubiquinone reductase, NADH-coenzyme Q oxidoreductase, NADH-coenzyme Q reductase, NADH-CoQ oxidoreductase, NADH-CoQ reductase) is an enzyme with systematic name NADH:ubiquinone oxidoreductase. This enzyme catalyses the following chemical reaction:

References