Microchip implant (human)

Last updated

A human microchip implant is any electronic device implanted subcutaneously (subdermally) usually via an injection. Examples include an identifying integrated circuit RFID device encased in silicate glass which is implanted in the body of a human being. This type of subdermal implant usually contains a unique ID number that can be linked to information contained in an external database, such as identity document, criminal record, medical history, medications, address book, and other potential uses.

Contents

History

Chipped individuals

A surgeon implants an RFID microchip in the left hand of British scientist Dr Mark Gasson (March 16, 2009) Dr Mark Gasson has an RFID microchip implanted in his left hand by a surgeon (March 16 2009).jpg
A surgeon implants an RFID microchip in the left hand of British scientist Dr Mark Gasson (March 16, 2009)

Several hobbyists, scientists and business personalities have placed RFID microchip implants into their hands or had them inserted by others.

Types of implants

Usage

For Microchip implants that are encapsulated in silicate glass, there exists multiple methods to embed the device subcutaneously ranging from placing the microchip implant in a syringe or trocar [39] and piercing under the flesh (subdermal) then releasing the syringe to using a cutting tool such as a surgical scalpel to cut open subdermal and positioning the implant in the open wound.

A list of popular uses for microchip implants are as follows;

Other uses either cosmetic or medical may also include;

Digital identity

RFID implants using NFC technologies have been used as access cards ranging for car door entry to building access. [41] Secure identity has also been used to encapsulate or impersonate a users identity via secure element or related technologies.

Medical records

Researchers have examined microchip implants in humans in the medical field and they indicate that there are potential benefits and risks to incorporating the device in the medical field. For example, it could be beneficial for noncompliant patients but still poses great risks for potential misuse of the device. [45]

Destron Fearing, a subsidiary of Digital Angel, initially developed the technology for the VeriChip. [46]

In 2004, the VeriChip implanted device and reader were classified as Class II: General controls with special controls by the FDA; [47] that year the FDA also published a draft guidance describing the special controls required to market such devices. [48]

About the size of a grain of rice, the device was typically implanted between the shoulder and elbow area of an individual's right arm. Once scanned at the proper frequency, the chip responded with a unique 16-digit number which could be then linked with information about the user held on a database for identity verification, medical records access and other uses. The insertion procedure was performed under local anesthetic in a physician's office. [49] [50]

Privacy advocates raised concerns regarding potential abuse of the chip, with some warning that adoption by governments as a compulsory identification program could lead to erosion of civil liberties, as well as identity theft if the device should be hacked. [50] [51] [52] Another ethical dilemma posed by the technology, is that people with dementia could possibly benefit the most from an implanted device that contained their medical records, but issues of informed consent are the most difficult in precisely such people. [53]

In June 2007, the American Medical Association declared that "implantable radio frequency identification (RFID) devices may help to identify patients, thereby improving the safety and efficiency of patient care, and may be used to enable secure access to patient clinical information", [54] but in the same year, news reports linking similar devices to cancer caused in laboratory animals. [55]

In 2010, the company, by then called PositiveID, withdrew the product from the market due to poor sales. [56]

In January 2012, PositiveID sold the chip assets to a company called VeriTeQ that was owned by Scott Silverman, the former CEO of Positive ID. [57]

In 2016, JAMM Technologies acquired the chip assets from VeriTeQ; JAMM's business plan was to partner with companies selling implanted medical devices and use the RFID tags to monitor and identify the devices. [58] JAMM Technologies is co-located in the same Plymouth, Minnesota building as Geissler Corporation with Randolph K. Geissler and Donald R. Brattain [59] [60] listed as its principals. The website also claims that Geissler was CEO of PositiveID Corporation, Destron Fearing Corporation, and Digital Angel Corporation. [61]

In 2018, a Danish firm called BiChip released a new generation of microchip implant [62] that is intended to be readable from a distance and connected to Internet. The company released an update for its microchip implant to associate it with the Ripple cryptocurrency to allow payments to be made using the implanted microchip. [63]

Patients that undergo NFC implants do so for a variety of reasons ranging from, Biomedical diagnostics, health reasons to gaining new senses, [64] gain biological enhancement, to be part of existing growing movements, for workplace purposes, security, hobbyists and for scientific endeavour. [65]

In 2020, a London-based firm called Impli released a microchip implant that is intended to be used with an accompanying smartphone app. The primary functionality of the implant is as a storage of medical records. The implant can be scanned by any smartphone that has NFC capabilities. [66]

Building access and security

In February 2006, CityWatcher, Inc. of Cincinnati, OH became the first company in the world to implant microchips into their employees as part of their building access control and security system. The workers needed the implants to access the company's secure video tape room, as documented in USA Today. [67] The project was initiated and implemented by Six Sigma Security, Inc. The VeriChip Corporation had originally marketed the implant as a way to restrict access to secure facilities such as power plants.

A major drawback for such systems is the relative ease with which the 16-digit ID number contained in a chip implant can be obtained and cloned using a hand-held device, a problem that has been demonstrated publicly by security researcher Jonathan Westhues [68] and documented in the May 2006 issue of Wired magazine, [69] among other places.

Proposed uses

In 2017, Mike Miller, chief executive of the World Olympians Association, was widely reported as suggesting the use of such implants in athletes in an attempt to reduce problems in sports due to recreational drug use. [72]

Theoretically, a GPS-enabled chip could one day make it possible for individuals to be physically located by latitude, longitude, altitude, and velocity.[ citation needed ] Such implantable GPS devices are not technically feasible at this time. However, if widely deployed at some future point, implantable GPS devices could conceivably allow authorities to locate missing people, fugitives, or those who fled a crime scene. Critics contend that the technology could lead to political repression as governments could use implants to track and persecute human rights activists, labor activists, civil dissidents, and political opponents; criminals and domestic abusers could use them to stalk, harass, and/or abduct their victims.

Another suggested application for a tracking implant, discussed in 2008 by the legislature of Indonesia's Irian Jaya would be to monitor the activities of people infected with HIV, aimed at reducing their chances of infecting other people. [73] [74] The microchipping section was not, however, included in the final version of the provincial HIV/AIDS Handling bylaw passed by the legislature in December 2008. [75] With current technology, this would not be workable anyway, since there is no implantable device on the market with GPS tracking capability.

Some have theorized[ who? ] that governments could use implants for:

Criticisms and concerns

Infection

Infection has been cited as a source of failure within RFID and related microchip implanted individuals, either due to improper implantation techniques, implant rejections or corrosion of implant elements. [76]

MRIs

An X-ray of a biohacker's hand showing several implants. XRay - m.opitz left hand showing several implanted microchips..jpg
An X-ray of a biohacker's hand showing several implants.

Some chipped individuals have reported being turned away from MRIs due to the presence of magnets in their body. [77] No conclusive investigation has been done on the risks of each type of implant near MRIs, other than anecdotal reports ranging from no problems, requiring hand shielding before proximity, to being denied the MRI.[ failed verification see discussion ]

Other medical imaging technologies like X-ray and CT scanners do not pose a similar risk. Rather, X-rays can be used to locate implants.

Corrosion

Electronics-based implants contain little material that can corrode. Magnetic implants, however, often contain a substantial amount of metallic elements by volume, and iron, a common implant element, is easily corroded by common elements such as oxygen and water. Implant corrosion occurs when these elements become trapped inside during the encapsulation process, which can cause slow corrosive effect, or the encapsulation fails and allows corrosive elements to come into contact with the magnet. Catastrophic encapsulation failures are usually obvious, resulting in tenderness, discoloration of the skin, and a slight inflammatory response. Small failures however can take much longer to become obvious, resulting in a slow degradation of field strength without many external signs that something is slowly going wrong with the magnet. [78]

Cancer risks

In a self-published report, [79] anti-RFID advocate Katherine Albrecht, who refers to RFID devices as "spy chips", cites veterinary and toxicological studies carried out from 1996 to 2006 which found lab rodents injected with microchips as an incidental part of unrelated experiments and dogs implanted with identification microchips sometimes developed cancerous tumors at the injection site (subcutaneous sarcomas) as evidence of a human implantation risk. [80] However, the link between foreign-body tumorigenesis in lab animals and implantation in humans has been publicly refuted as erroneous and misleading [81] and the report's author has been criticized [ by whom? ] over the use of "provocative" language "not based in scientific fact". [82] Notably, none of the studies cited specifically set out to investigate the cancer risk of implanted microchips and so none of the studies had a control group of animals that did not get implanted. While the issue is considered worthy of further investigation, one of the studies cited cautioned "Blind leaps from the detection of tumors to the prediction of human health risk should be avoided". [83] [84] [85]

Stolen identity, privacy, security risks

The Council on Ethical and Judicial Affairs (CEJA) of the American Medical Association published a report in 2007 alleging that RFID implanted chips may compromise privacy because even though no information can be stored in an RFID transponder, they allege that there is no assurance that the information contained in the chip can be properly protected. [86]

Stolen identity and privacy has been a major concern with microchip implants being cloned for various nefarious reasons in a process known as Wireless identity theft. Incidents of forced removal of animal implants have been documented, [87] the concern lies in whether this same practice will be used to attack implanted microchipped patients also. Due to low adoption of microchip implants incidents of these physical attacks are rare. Nefarious RFID reprogramming of unprotected or unencrypted microchip tags are also a major security risk consideration.

Risk to human freedom and autonomy

There is concern technology can be abused. [88] Opponents have stated that such invasive technology has the potential to be used by governments to create an 'Orwellian' digital dystopia and theorized that in such a world, self-determination, the ability to think freely, and all personal autonomy could be completely lost. [89] [90] [91]

Ableism

In 2019, Elon Musk announced that a company he had founded which deals with microchip implant research, called Neuralink, would be able to "solve" autism and other "brain diseases". [92] This led to a number of critics calling out Musk for his statements, with Dan Robitzski of Neoscope saying, "while schizophrenia can be a debilitating mental condition, autism is more tightly linked to a sense of identity — and listing it as a disease to be solved as Musk did risks further stigmatizing a community pushing for better treatment and representation." [93] Hilary Brueck of Insider agreed, saying, "conditions like autism can't be neatly cataloged as things to "solve." Instead, they lead people to think differently". She went on to argue though that the technology shouldn't be discounted entirely, as it could potentially help people with a variety of disabilities such as blindness and quadriplegia. [94] Fellow Insider writer Isobel Asher Hamilton added, "it was not clear what Musk meant by saying Neuralink could "solve" autism, which is not a disease but a developmental disorder." She then cited The UK's National Autistic Society's website statement, which says, "Autism is not an illness or disease and cannot be 'cured.' Often people feel being autistic is a fundamental aspect of their identity." [95] Tristan Greene of The Next Web stated, in response to Musk, "there’s only one problem: autism isn’t a disease and it can’t be cured or solved. In fact, there’s some ethical debate in the medical community over whether autism, which is considered a disorder, should be treated as part of a person’s identity and not a ‘condition’ to be fixed... how freaking cool would it be to actually start your Tesla [electric vehicle] just by thinking? But, maybe... just maybe, the billionaire with access to the world's brightest medical minds who, even after founding a medical startup, still incorrectly thinks that autism is a disease that can be solved or cured shouldn't be someone we trust to shove wires or chips into our brains." [96]

Some autistic people also spoke out against Musk's statement about using microchips to "solve" autism, with Nera Birch of The Mighty, an autistic writer, stating, "autism is a huge part of who I am. It pervades every aspect of my life. Sure, there are days where being neurotypical would make everything so much easier. But I wouldn’t trade my autism for the world. I have the unique ability to view the world and experience senses in a way that makes all the negatives of autism worth it. The fact you think I would want to be “cured” is like saying I would rather be nothing than be myself. People with neurodiversity are proud of ourselves. For many of us, we wear our autism as a badge of pride. We have a culture within ourselves. It is not something that needs to be erased. The person with autism is not the problem. Neurotypical people need to stop molding us into something they want to interact with." [97] Florence Grant, an autistic writer for The Independent , stated, "autistic people often have highly-focused interests, also known as special interests. I love my ability to hyperfocus and how passionate I get about things. I also notice small details and things that other people don’t see. I see the world differently, through a clear lens, and this means I can identify solutions where other people can’t. Does this sound familiar, Elon? My autism is a part of me, and it’s not something that can be separated from me. I should be able to exist freely autistic and proud. But for that to happen, the world needs to stop punishing difference and start embracing it." Grant noted that Musk himself had recently admitted that he had been diagnosed with Asperger's syndrome (itself an outdated diagnosis, the characteristics of which are currently recognized as part of the autism spectrum [98] ) while hosting Saturday Night Live . [99]

Musk himself has not specified how Neuralink's microchip technology would "solve" autism, and has not commented publicly on the feedback from autistic people.

Misinformation

Despite a lack of evidence demonstrating invasive use or even technical capability of microchip implants, they have been the subject of many conspiracy theories.

The Southern Poverty Law Center reported in 2010 that on the Christian right, there were concerns that implants could be the "mark of the beast" and amongst the Patriot movement there were fears that implants could be used to track people. [100] The same year NPR reported that a myth was circulating online that patients who signed up to receive treatment under the Affordable Care Act (Obamacare) would be implanted. [101]

In 2016, Snopes reported that being injected with microchips was a "perennial concern to the conspiracy-minded" and noted that a conspiracy theory was circulating in Australia at that time that the government was going to implant all of its citizens. [102]

A 2021 survey by YouGov found that 20% of Americans believed microchips were inside the COVID-19 vaccines. [103] [104] A 2021 Facebook post by RT (Russia Today) claimed DARPA had developed a COVID-19 detecting microchip implant. [105] [106]

Legislation

A few jurisdictions have researched or preemptively passed laws regarding human implantation of microchips.

United States

In the United States, many states such as Wisconsin (as of 2006), North Dakota (2007), California (2007), Oklahoma (2008), and Georgia (2010) have laws making it illegal to force a person to have a microchip implanted, though politicians acknowledge they are unaware of cases of such forced implantation. [107] [108] [109] [110] In 2010, Virginia passed a bill forbidding companies from forcing employees to be implanted with tracking devices. [111]

In 2010, Washington's House of Representatives introduced a bill ordering the study of potential monitoring of sex offenders with implanted RFID or similar technology, but it did not pass. [112]

Views

The general public are most familiar with microchips in the context of identifying pets.

Implanted individuals are considered to be grouped together as part of the transhumanism movement.

"Arkangel", an episode of the drama series Black Mirror , considered the potential for helicopter parenting of an imagined more advanced microchip.

Microchip implants have been explored in Cyberpunk media such as Ghost in the Shell, Cyberpunk 2077, and Deus Ex.

Religious beliefs

Some Christians make a link between implants and the Biblical Mark of the Beast, [113] [114] prophesied to be a future requirement for buying and selling, and a key element of the Book of Revelation . [115] [116] Gary Wohlscheid, president of These Last Days Ministries, has argued that "Out of all the technologies with potential to be the mark of the beast, VeriChip has got the best possibility right now". [117]

See also

Related Research Articles

Radio-frequency identification (RFID) uses electromagnetic fields to automatically identify and track tags attached to objects. An RFID system consists of a tiny radio transponder called a tag, a radio receiver, and a transmitter. When triggered by an electromagnetic interrogation pulse from a nearby RFID reader device, the tag transmits digital data, usually an identifying inventory number, back to the reader. This number can be used to track inventory goods.

An artificial organ is a human made organ device or tissue that is implanted or integrated into a human — interfacing with living tissue — to replace a natural organ, to duplicate or augment a specific function or functions so the patient may return to a normal life as soon as possible. The replaced function does not have to be related to life support, but it often is. For example, replacement bones and joints, such as those found in hip replacements, could also be considered artificial organs.

<span class="mw-page-title-main">Medical identification tag</span> Bracelet or tag with medical information

A medical identification tag is a small emblem or tag worn on a bracelet, neck chain, or on the clothing bearing a message that the wearer has an important medical condition that might require immediate attention. For emergency medical providers such as paramedics and emergency physicians, medical identification tags are particularly useful in situations where the wearer is unconscious, altered mental status, very young, or otherwise unable to provide critical medical information. The tag is often made out of stainless steel or sterling silver. A wallet card with the same information may be used instead of or along with a tag, and a stick-on medical ID tag may be added or used alone.

<span class="mw-page-title-main">Subdermal implant</span> Body modification type

A subdermal implant is a body modification placed under the skin, allowing the body to heal over the implant and creating a raised design. Such implants fall under the broad category of body modification. Many subdermal implants are made out of silicone, either carved or mold injected. Many people who have subdermal implants use them in conjunction with other types of body modification to create a desired, dramatic effect. This process is also known as a 3-D implant, or pocketing.

<span class="mw-page-title-main">Elon Musk</span> South African-born businessman

Elon Reeve Musk is a businessman and investor known for his key roles in the space company SpaceX and the automotive company Tesla, Inc. Other involvements include ownership of X Corp., the company that operates the social media platform X, and his role in the founding of the Boring Company, xAI, Neuralink, and OpenAI. He is one of the wealthiest individuals in the world; as of August 2024 Forbes estimates his net worth to be US$247 billion.

<span class="mw-page-title-main">Digital Angel</span>

Digital Angel Corporation is a developer and publisher of consumer applications and mobile games designed for tablets, smartphones and other mobile devices, as well as a distributor of two-way communications equipment in the U.K.

<span class="mw-page-title-main">Microchip implant (animal)</span> Implant used in animals

A microchip implant is an identifying integrated circuit placed under the skin of an animal. The chip, about the size of a large grain of rice, uses passive radio-frequency identification (RFID) technology, and is also known as a PIT tag. Standard pet microchips are typically 11–13 mm long and 2 mm in diameter.

<span class="mw-page-title-main">Bioactive glass</span> Surface reactive glass-ceramic biomaterial

Bioactive glasses are a group of surface reactive glass-ceramic biomaterials and include the original bioactive glass, Bioglass. The biocompatibility and bioactivity of these glasses has led them to be used as implant devices in the human body to repair and replace diseased or damaged bones. Most bioactive glasses are silicate-based glasses that are degradable in body fluids and can act as a vehicle for delivering ions beneficial for healing. Bioactive glass is differentiated from other synthetic bone grafting biomaterials, in that it is the only one with anti-infective and angiogenic properties.

ISO 11784 and ISO 11785 are international standards that regulate the radio-frequency identification (RFID) of animals, which is usually accomplished by implanting, introducing or attaching a transponder containing a microchip to an animal.

A contactless smart card is a contactless credential whose dimensions are credit card size. Its embedded integrated circuits can store data and communicate with a terminal via NFC. Commonplace uses include transit tickets, bank cards and passports.

Body hacking is the application of the hacker ethic in pursuit of enhancement or change to the body's functions through technological means, such as do-it-yourself cybernetic devices or by introducing biochemicals.

<span class="mw-page-title-main">Magnetic implant</span> Procedure where a magnet is inserted to create a sense of magnetism

Magnetic implant is an experimental procedure in which small, powerful magnets are inserted beneath the skin, often in the tips of fingers. They exist in tubes and discs. This procedure is popular among biohackers and grinders, but remains experimental. Magnetic implants are often performed by amateurs at home, using readily available surgical tools and magnets found online. However, some professional body modification shops do perform implant surgeries. Magnetic implants can also be used as an interface for portable devices to create other new "senses", for example converting other sensory inputs such as ultrasonic or infra-red into a touch sensation. In this way the individual could 'feel' e.g. the distance to objects.

<span class="mw-page-title-main">Mark Gasson</span> British research scientist

Mark N. Gasson is a British scientist and visiting research fellow at the Cybernetics Research Group, University of Reading, UK. He pioneered developments in direct neural interfaces between computer systems and the human nervous system, has developed brain–computer interfaces and is active in the research fields of human microchip implants, medical devices and digital identity. He is known for his experiments transmitting a computer virus into a human implant, and is credited with being the first human infected with a computer virus.

Dynamic Intelligent Currency Encryption (DICE) is a technological concept designed to enhance the security of paper currency. The system tracks and monitors banknotes in circulation using identifiable characteristics, allowing for the remote devaluation of banknotes involved in fraudulent activities or criminal transactions. Developed in 2014 by the British-Austrian technology company EDAQS, DICE involves the use of Machine Readable Codes (MRC) or Radio-Frequency Identification (RFID) tags embedded in banknotes. These banknotes are then registered to a centralized system to increase security and reduce the risk of forgery tags. These banknotes are then registered to a centralized system, purportedly rendering them secure and resistant to forgery.

<span class="mw-page-title-main">Neuralink</span> American neurotechnology company

Neuralink Corp. is an American neurotechnology company that has developed, as of 2024, implantable brain–computer interfaces (BCIs). It was founded by Elon Musk and a team of seven scientists and engineers. Neuralink was launched in 2016 and was first publicly reported in March 2017. The company is based in Fremont, California with plans to build a three-story building with office and manufacturing space near Austin, Texas in Del Valle, located about 10 miles east of Tesla's headquarters and manufacturing plant that opened in 2022.

<span class="mw-page-title-main">Dangerous Things</span> American microchip implant company

Dangerous Things is a Seattle-based cybernetic microchip biohacking implant retailer formed in 2013 by Amal Graafstra, following a crowdfunding campaign.

Shivon Alice Zilis is a Canadian technology executive and venture capitalist.

Noland Arbaugh is an American quadriplegic known for being the first human recipient of Neuralink's brain-computer interface (BCI) implant. He gained attention for his use of the device to regain digital autonomy after a spinal cord injury left him paralyzed.

Blindsight is an experimental medical device developed by Neuralink. It has received Breakthrough Device Designation from the US Food and Drugs Administration (FDA).

Paradromics is an American brain–computer interface (BCI) company headquartered in Austin, Texas with a second office located in Oakland, California.

References

  1. "Is human chip implant wave of the future?". CNN. January 13, 1999. Retrieved May 12, 2010.
  2. "Professor has world's first silicon chip implant" . independent.co.uk. 26 August 1998. Archived from the original on 2022-05-14.
  3. "Professor Cyborg". Wired. 1998-08-25.
  4. "BBC News – Sci/Tech – Technology gets under the skin". news.bbc.co.uk.
  5. Sanchez-Klein, Jana. "CNN – Cyberfuturist plants chip in arm to test human-computer interaction – August 28, 1998". edition.cnn.com.
  6. "National Museum of Science & Industry Annual Report" (PDF). Science Museum Group.
  7. Hamblen, Matt (2012-12-19). "A short history of NFC". Computerworld. Retrieved 2020-09-24.
  8. "VivoKey.com". VivoKey Technologies Inc.
  9. 1 2 "Elon Musk unveils pig with chip in its brain". BBC News. 2020-08-29. Retrieved 2020-09-23.
  10. "DSruptive – Implantable chip implants". Dsruptive Subdermals.
  11. Aitken, Peter (23 December 2021). "Swedish COVID vaccine pass microchip maker addresses privacy concerns". FOXBusiness.
  12. 1 2 "The Covid-19 passport microchip". South China Morning Post.
  13. "Amal Graafstra – Technologist, Author & Double RFID Implantee". amal.net. Retrieved 2017-05-26.
  14. "RFID Toys Forum". Dangerous Things Forum. Retrieved 2017-05-26.
  15. "Dangerous Things". Dangerous Things. Retrieved 2017-05-26.
  16. "The xNT implantable NFC chip". Indiegogo. Retrieved 2017-05-26.
  17. bpg (2017-03-09), PRMT | Ghost In the Shell , retrieved 2017-05-26
  18. TEDx Talks (2013-10-17), Biohacking – the forefront of a new kind of human evolution: Amal Graafstra at TEDxSFU, archived from the original on 2021-12-20, retrieved 2017-05-26
  19. Motherboard (2017-03-23), Who Killed the Smart Gun?, archived from the original on 2021-12-20, retrieved 2017-05-26
  20. The Good Life Lab (2006-05-12), RFID Implant – Fox News – Mikey Sklar, archived from the original on 2021-12-20, retrieved 2019-07-24
  21. Gasson, M. N. (2010). "Human Enhancement: Could you become infected with a computer virus?" (PDF). 2010 IEEE International Symposium on Technology and Society. pp. 61–68. doi:10.1109/ISTAS.2010.5514651. ISBN   978-1-4244-7777-7. S2CID   3098538.
  22. Lallanilla, Marc (November 1, 2013). "'Biohacker' Implants Chip in Arm". Live Science. Retrieved 18 July 2017.
  23. "Cyborg People Who Implanted Tech – Business Insider". Businessinsider.com. Retrieved 2015-04-09.
  24. "The brave new world of biohacking | Al Jazeera America". America.aljazeera.com. Retrieved 2015-04-09.
  25. Clark, Liat (November 11, 2014). "Hand-implanted NFC chips open this man's bitcoin wallet". Wired UK. Retrieved February 15, 2015.
  26. Gray, John (2014-06-10). "I Watched A guy Get a Chip Implanted in his Hand and It Was Pretty Cool". Vice. Retrieved 2020-05-18.
  27. Futurist Nikolas Badminton gets implanted with a microchip, 27 June 2014, archived from the original on 2021-12-20, retrieved 2020-05-18
  28. "Jondo the Mandroid is RFID enabled". Archived from the original on 2017-02-20. Retrieved 2015-06-09.
  29. Pearson, Jordan (October 30, 2015). "This Guy Implanted His Bitcoin Wallet and Made a Payment With His Hand" . Retrieved November 2, 2015.
  30. "Au pays des espèces en voie de disparition". lesechos.fr. 2016-02-19. Retrieved 2016-07-07.
  31. Wakefield, Jane (2014-12-10). "The rise of the Swedish cyborgs – BBC News". BBC News. Retrieved 2016-07-07.
  32. "Få covidbeviset under huden – går att få som ett chip – Aftonbladet TV" (in Swedish).
  33. "Facing COVID passport mandate, more Swedes get microchip implants". www.aa.com.tr.
  34. "Heraldsun.com.au – Subscribe to the Herald Sun for exclusive stories". www.heraldsun.com.au.
  35. "BSides Tallinn's Best Of BSides 2021: BSides Perth 2021- Shain Lakin's 'Offensive RFID/NFC' – Security Boulevard". www.securityboulevard.com. 13 December 2021.
  36. "Hacking with an NFC Implant – Offensive Bio Implants". www.x90x90.net. 19 September 2022.
  37. 1 2 Weintraub, Karen. "Invisible Ink Could Reveal whether Kids Have Been Vaccinated". Scientific American.
  38. "Chip in tooth – scientists point way to new identity tag". the Guardian. 28 February 2006.
  39. Milad, Magdy; Tu, Frank; Epstein, Lee; Bradley, Linda D. (2007). "Endoscopic Approaches to Gynecologic Disease". General Gynecology. pp. 755–784. doi:10.1016/B978-032303247-6.10030-9. ISBN   978-0-323-03247-6.
  40. Umoh, Ruth (2018-04-13). "Why this guy paid $75 to store bitcoin under his skin". CNBC. Retrieved 2021-04-27.
  41. 1 2 Shaik, Idrish; Chilukuri; Tejaswi (2018-03-03). "Door Access Security System Using NFC Technology" (PDF). International Research Journal of Engineering and Technology. 5: 320–324.
  42. "This Guy Just Implanted a Payments Chip in His Hand, Literally [VIDEO]". bankinnovation.net. 25 May 2016. Retrieved 2020-09-25.
  43. "Implantable credit card RFID chips: convenient, but creepy". CreditCards.com. Retrieved 2020-09-25.
  44. "Bio-hacker who implanted Opal Card into hand fined for not using valid ticket". www.abc.net.au. 2018-03-16. Retrieved 2020-09-25.
  45. Eltorai, Adam E. M.; Fox, Henry; McGurrin, Emily; Guang, Stephanie (2016). "Microchips in Medicine: Current and Future Applications". BioMed Research International. 2016: 1–7. doi: 10.1155/2016/1743472 . PMC   4914739 . PMID   27376079.
  46. Smith, Richard M. “Tough Sell Ahead for the VeriChip Implant ID System.” Archived October 25, 2007, at the Wayback Machine , Computer Bytes Man. 27 Dec. 2001. 16 Oct. 2007
  47. "KO33440: Designation of VeriChip as Class II with special controls" (PDF). FDA. October 12, 2004.
  48. "Class II Special Controls Guidance Document: Implantable Radiofrequency Transponder System for Patient Identification and Health Information" (PDF). FDA. December 10, 2004.
  49. "Verichip Consumer FAQ". Archived from the original on August 2, 2009. Retrieved 2009-08-16.
  50. 1 2 Halamka, J; Juels, A; Stubblefield, A; Westhues, J (2006). "The security implications of VeriChip cloning". Journal of the American Medical Informatics Association. 13 (6): 601–7. doi:10.1197/jamia.M2143. PMC   1656959 . PMID   16929037.
  51. "Human-implantable RFID chips: Some ethical and privacy concerns". Healthcare IT News. 30 July 2007.
  52. Westra, BL (March 2009). "Radio frequency identification". The American Journal of Nursing. 109 (3): 34–6. doi:10.1097/01.NAJ.0000346925.67498.a4. PMID   19240491.
  53. Mordini, E; Ottolini, C (2007). "Body identification, biometrics and medicine: ethical and social considerations" (PDF). Annali dell'Istituto Superiore di Sanità. 43 (1): 51–60. PMID   17536154.
  54. "American Medical Association CEJA Report 5-A-07".
  55. Lewan, Todd (September 8, 2007). "Chip Implants Linked to Animal Tumours". The Washington Post. Retrieved 2010-06-08.
  56. Edwards, Jim. "Down With the Chip: PositiveID Axes Its Scary Medical Records". bNET. July 15, 2010. Retrieved March 2, 2017
  57. "VeriTeQ Acquisition Corporation Acquires Implantable, FDA-Cleared VeriChip Technology and Health Link Personal Health Record from PositiveID Corporation". VeriTeQ via BusinessWire. January 17, 2012.
  58. Geissler, Randy (April 4, 2016). "JAMM Technologies Acquires the Veriteq RFID Technology Platform and Enters into Supply Agreement with Establishment Labs". JAMM via PRWeb.
  59. "Don Brattain, OSU SPEARS SCHOOL TRIBUTES: 100 FOR 100". Oklahoma State University. November 2014. Retrieved April 21, 2018.
  60. "Tyler Technologies, Inc., Tyler Investor Community, Directors, Donald R. Brattain, Independent Director". Tyler Technologies, Inc. Retrieved April 21, 2018.
  61. "Geissler Corporation – Management". Geissler Corporation. 24 July 2016. Retrieved April 21, 2018.
  62. Denmark, BEZH (2019). "Bichip Patent in Denmark". dkpto.
  63. Hamill, Jasper (January 2018). "Would you store Ripple and Bitcoin in microchip?". Metro.
  64. Robertson, Adi (2017-07-21). "I hacked my body for a future that never came". The Verge. Retrieved 2020-09-24.
  65. Gillan, Fraser (2019-10-06). "The transhumanists 'upgrading' their bodies". BBC News. Retrieved 2020-09-24.
  66. "Impli is announcing the release of ImpliCaspian; your identifier. – Impli". 4 December 2019.
  67. Lewan, Todd. USA Today. July 2007. "Microchips in humans spark privacy debate.".
  68. Westhues, Jonathan. "Demo: Cloning a VeriChip." Demo: Cloning a VeriChip.
  69. Newitz, Annalee (May 2006). "The RFID Hacking Underground". Wired . Retrieved July 13, 2011.
  70. http://www.baja.nl/vipform.aspx Archived 2009-12-24 at the Wayback Machine
  71. Mearian, Lucas (February 6, 2015). "Office complex implants RFID chips in employees' hands". Computerworld . Retrieved February 15, 2015.
  72. "Will microchips be used in athletes to prevent doping?".
  73. "Indonesia's Papua plans to tag AIDS sufferers", Mon Nov 24, 2008.
  74. Jason Tedjasukmana (Nov 26, 2008), "Papua Proposal: A Microchip to Track the HIV-Positive", Time, archived from the original on November 30, 2008
  75. Government Of Indonesian Province Rejects Plan To Implant Microchips In Some HIV-Positive People Archived 2013-12-25 at the Wayback Machine , 2008-12-08
  76. Schiffmann, Alain; Clauss, Martin; Honigmann, Philipp (2020). "Biohackers and Self-Made Problems: Infection of an Implanted RFID/NFC Chip: A Case Report". JBJS Case Connector. 10 (2): e0399. doi:10.2106/JBJS.CC.19.00399. PMID   32649126. S2CID   219881074.
  77. Robertson, Adi (2017-07-21). "I hacked my body for a future that never came". The Verge. Retrieved 2020-09-23.
  78. Eliaz, Noam (2019-01-28). "Corrosion of Metallic Biomaterials: A Review". Materials. 12 (3): 407. Bibcode:2019Mate...12..407E. doi: 10.3390/ma12030407 . PMC   6384782 . PMID   30696087.
  79. http://www.antichips.com/cancer/ Archived 2007-12-23 at the Wayback Machine Microchip-Induced Tumors in Laboratory Rodents and Dogs: A Review of the Literature 1990–2006
  80. Lewan, Todd (September 8, 2007), "Chip Implants Linked to Animal Tumours", The Washington Post, retrieved 2010-06-08
  81. RFID Journal (12 September 2007). "VeriChip Defends the Safety of Implanted RFID Tags". rfidjournal.com. Archived from the original on October 13, 2014. Retrieved 13 April 2016.
  82. uownow (2011-03-23), IEEE ISTAS 2010 @ UOW – Dr Katherine Albrecht, archived from the original on 2021-12-20, retrieved 2019-07-24
  83. Blanchard, K. T.; Barthel, C.; French, J. E.; Holden, H. E.; Moretz, R.; Pack, F. D.; Tennant, R. W.; Stoll, R. E. (1999). "Transponder-Induced Sarcoma in the Heterozygous p53+/- Mouse". Toxicologic Pathology. 27 (5): 519–27. doi: 10.1177/019262339902700505 . PMID   10528631.
  84. "Lewan, Todd. The Associated Press, September 8, 2007. "Chip Implants Linked to Animal Tumors"". washingtonpost.com. Archived from the original on 2008-07-25.
  85. "Studies Linking Microchips and Cancer". Archived from the original on 2008-06-15. Retrieved 2009-11-15.
  86. CEJA of the American Medical Association, CEJA Report 5-A-07, Radio Frequency ID Devices in Humans, presented by Robert M. Sade, MD, Chair. 2007
  87. "Dognappers hacked microchip out of dog and stole her puppies". Metro. 2020-07-19. Retrieved 2020-09-24.
  88. The Guardian, , Remote-controlled contraceptive microchip could launch. 2014
  89. HuffPost, , Towards The Orwellian Era of a Microchipped Workforce. 2017
  90. The Times, , Microchipping workers takes us back to 1984. 2018
  91. IOT News, , Could microchip implants presage George Orwell's chilling novel '1984'?. 2014
  92. Gilmer, Marcus (14 November 2019). "Elon Musk's comments on autism prove he should not podcast". mashable.com. Mashable. Retrieved 12 February 2023.
  93. Robitzski, Dan (14 November 2019). "Elon Musk Claims Neuralink Can "Solve" Autism, Schizophrenia: He incorrectly suggested that autism is a brain disease". futurism.com. Neoscope. Retrieved 12 February 2023.
  94. Brueck, Hilary. "Elon Musk said his brain chips might 'solve' autism and schizophrenia. A neuroscientist who implants brain chips has doubts". www.insider.com. Insider. Retrieved 12 February 2023.
  95. Hamilton, Isobel Asher. "Elon Musk said his AI-brain-chips company could 'solve' autism and schizophrenia". www.businessinsider.com. Insider. Retrieved 12 February 2023.
  96. Greene, Tristan (14 November 2019). "Elon Musk says Neuralink can 'solve' autism with a brain chip. We call BS". thenextweb.com. The Next Web. Retrieved 12 February 2023.
  97. Birch, Nera (9 November 2022). "Dear Elon Musk: I Don't Need a Brain Chip to 'Solve' My Autism". themighty.com. The Mighty. Retrieved 12 February 2023.
  98. "Neurodevelopmental Disorders". Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, Text Revision (DSM-5-TR). Washington, DC: American Psychiatric Association. 18 March 2022. ISBN   978-0-89042-577-0. LCCN   2021051782.
  99. Grant, Florence (17 May 2021). "No, Elon Musk, autism does not need 'solving' – we'd much rather be accepted as we are". www.independent.co.uk. Independent. Retrieved 12 February 2023.
  100. "Microchip Implantation Feared as Sign of End Times". Southern Poverty Law Center. Retrieved 10 October 2023.
  101. Rovner, Julie (3 September 2010). "Health Law Myths: Outside The Realm Of Reality". National Public Radio. Retrieved 10 October 2023.
  102. Emery, David (4 October 2016). "Australia Becomes First Country to Begin Microchipping Its Public?". Snopes. Retrieved 10 October 2023.
  103. "The Economist/YouGov Poll" (PDF). YouGov. 13 July 2021. Archived from the original (PDF) on 2023-10-06.
  104. Dawson, Bethany. "20% of Americans believe the conspiracy theory that microchips are inside the COVID-19 vaccines, says YouGov study". Insider.
  105. Vercellone, Chiara. "Fact Check: Military-funded sensor can help detect COVID-19, but it's not a microchip". USA TODAY.
  106. "Military programs aiming to end pandemics forever". CBS News. 11 April 2021.
  107. Songini, Marc L. (2006-06-12). "Wisconsin law bars forced RFID implants". Network World. Retrieved 2023-01-06.
  108. "California Bans Forced RFID Tagging of Humans". GovTech. 2010-07-27. Retrieved 2023-01-06.
  109. Tim Talley. "Bill bans involuntary microchip implants". 2008.
  110. "Radio Frequency Identification (RFID) Privacy Laws". 2015.
  111. "Virginia delegates pass bill banning chip implants as 'mark of the beast' – Raw Story – Celebrating 18 Years of Independent Journalism". www.rawstory.com. Retrieved 2023-01-06.
  112. HB 1142-2009-10 to study requiring the use of implanted RFID in certain felons.
  113. Streitfield, David (9 May 2002). "First Humans to Receive ID Chips; Technology: Device injected under the skin will provide identification and medical information". Los Angeles Times. Archived from the original on November 8, 2012. Retrieved 13 September 2010.
  114. Gilbert, Alorie (16 February 2005). "Is RFID the mark of the beast?". CNET News. Retrieved 13 September 2010.
  115. Albrecht, Katherine; McIntyre, Liz (2006-01-31). The Spychips Threat: Why Christians Should Resist RFID and Electronic Surveillance. Nelson Current. ISBN   1-59555-021-6.
  116. Baard, Mark (2006-06-06). "RFID: Sign of the (End) Times?". Wired. Wired.com. Retrieved 2009-10-13.
  117. Scheeres, Julia (6 February 2002). "They Want Their ID Chips Now". Wired News. Retrieved 13 September 2010.

Further reading