Microneurography

Last updated
Microneurography
Microneurography, experimental setup, schematic.jpg
Schematic illustration of experimental setup for recording nerve impulses from a touch afferent in the hairy skin of a human arm. A series of single unit impulses in response to a touch stimulus are shown as well as one of the impulses on expanded time scale to demonstrate impulse shape.
Purposerecord the normal traffic of nerve impulses that are conducted in peripheral nerves

Microneurography is a neurophysiological method employed to visualize and record the traffic of nerve impulses that are conducted in peripheral nerves of waking human subjects. It can also be used in animal recordings. The method has been successfully employed to reveal functional properties of a number of neural systems, e.g. sensory systems related to touch, pain, and muscle sense as well as sympathetic activity controlling the constriction state of blood vessels. To study nerve impulses of an identified nerve, a fine tungsten needle microelectrode is inserted into the nerve and connected to a high input impedance differential amplifier. The exact position of the electrode tip within the nerve is then adjusted in minute steps until the electrode discriminates nerve impulses of interest. A unique feature and a significant strength of the microneurography method is that subjects are fully awake and able to cooperate in tests requiring mental attention, while impulses in a representative nerve fibre or set of nerve fibres are recorded, e.g. when cutaneous sense organs are stimulated or subjects perform voluntary precision movements.

Contents

History

Before the microneurography technique was developed in the late 1960s, impulses in peripheral nerves had been recorded in animal experiments alone using a technique that involved dissection and splitting the nerve. This approach is not tolerable for general use in humans although it has been pursued in one single study. [1] Actually, the concern of nerve damage was a major obstacle for the development of microneurography because the approach of inserting a needle electrode in a human nerve was generally regarded as potentially dangerous and involving substantial risk of permanent nerve damage. The two Swedish scientists who developed the microneuropgraphy technique (Hagbarth and Vallbo) handled the medical-ethical concern by performing a large series of experiments on their own nerves during a period of about 2 years while carefully checking for nerve damage. Working at the Department of Clinical Neurophysiology, Academic Hospital, Uppsala, they collected data resulting in the first papers representing three areas to become major fields of microneurography, i.e. afference from intra-muscular sense organs during voluntary contractions, response of cutaneous sense organs related to touch stimuli, and efferent sympathetic activity controlling the constriction of human blood vessels. [2] [3] [4] The microneurography approach of Hagbarth and Vallbo based on epoxy resin coated tungsten microelectrodes is now generally accepted whereas an alternative attempt using glass coated platina-iridium electrodes had obviously limited success as it yielded a single short note alone. [5]

Structure of nerves

Nerve fibers (axons) of various kinds are more or less randomly mixed in most nerves. This is true for fibers of different functions as well as fibers of different sizes. Basically fiber diameter is closely related to function, e.g. the cutaneous pain system is dependent on small nerve fibers whereas discriminative touch is dependent on large fibers. With regard to fiber diameter there are two main categories: myelinated A-fibers are large and conduct impulses at high or moderate speed (5–75 m/s) while unmyelinated C-fibers are small and conduct impulses at low speed (around 1 m/s). In microneurography recordings, A- and C-fiber impulses differ in shape and polarity of the main upstroke of the action potential. Because fibers are mixed in most nerves, it is usually essential to record from an individual nerve fiber at a time to explore the properties of a functional system, although multi-unit recording has been very rewarding in studies of sympathetic efferent activity. An individual nerve consists of a number of fascicles, i.e. bundles of nerve fibers enclosed within a connective tissue sheath containing the different nerve fibers. Therefore, the tip of the microelectrode needs to be not only intraneural but also intrafascicular for a recording to be possible.

Methods

Microneurography is based on tungsten needle microelectrodes which are inserted through the skin and into a nerve. Anaesthetics are not required because the procedure induces only minimal discomfort. The tungsten microelectrodes have a shaft diameter of 100-200 μm, a tip diameter of 1-5 μm, and they are insulated to the tip with an epoxy resin. Electrode impedance varies between 0.3 and 5 MΩ at 1 kHz as measured initially. However, the impedance tends to decrease during experiment and is usually below 1 MΩ while impulses are recorded. Nerve discharges are determined by voltage differences between the intra-neural electrode and a reference needle electrode in the vicinity. The 2 electrodes are connected to a differential amplifier with a high input impedance and an appropriate band-pass filtering, often 500 to 5000 Hz. Signals are monitored on a computer screen and stored on a hard disc for off-line analysis. Any peripheral nerve that can be reached may be a target for microneurography recordings, typically in the arm or leg, although recording from facial nerves and the vagus nerve have also been achieved. In order to locate deep nerves, electrical stimulation through a needle electrode or ultrasonic monitoring is often used. This is rarely needed when recording from cutaneous superficial nerves, such as the superficial peroneal or superficial radial nerves, that can easily be located visually and by palpation. When electrical localization is needed, weak electrical shocks are delivered either through the recording electrode or through a separate stimulation needle while adjusting the electrode tip until a neural response is observed, either a muscle twitch or a cutaneous sensation reported by the subject. In ultrasonic monitoring, a linear, high frequency ultrasound probe is used. [6] The microelectrode is then inserted 1–2 cm from the probe, ideally in a 90° angle to the ultrasonic beam. This generates the best wave reflection and image. Ultrasonic approach accurately locates the depth of the nerve and identifies surrounding anatomical structures of interest, such as blood vessels and bony structures, which may affect the placement of a microelectrode. A particular advantage is that the ultrasonic approach visualizes the electrode and the nerve at the same time, thereby facilitating electrode manipulation to reach the nerve. Once the electrode tip is in the nerve, small adjustments are required, first, to penetrate the sheath of an individual fascicle and, second, to take the tip close to the nerve fibers of the kind you are interested to explore, be it multi-unit sympathetic activity or single unit activity of either a myelinated afferent or a small unmyelinated fibres.

The marking technique

Recording of single afferent impulses from C-fibers was greatly improved by the development of the so-called 'marking technique'. This technique is based on a unique property of many kinds of C-fibres, i.e. a decrease of conduction velocity in the wake of preceding impulses. [7] By combining repetitive electrical stimulation and physical stimulation, e.g. mechanical or thermal stimuli, units responding to the physical stimulation will display sudden slowing of their conduction velocity which can be easily visualized in raster plots of latency. This allows identification and characterization of nerve fiber responsiveness to natural stimulation. The marking technique is very efficient as it allows simultaneous recordings of several fibers. However, it generates only semi-quantitative information about unitary activity, whereas recordings of impulse trains allow more comprehensive description of functional properties of sense organs.[ citation needed ]

Micro-stimulation

The microneurography electrode may be used not only for recording of nerve impulses but for stimulation of individual fibers as well. An interesting application is to combine successive recording and stimulation of the same afferent. Once the functional properties of an afferent have been defined, e.g. with regard to sensitivity, receptive field structure, and adaptation, the electrode may be reconnected to a stimulator to give trains of electrical pulses of controlled strength, rate, and duration. It has been found that the percept elicited from a single tactile afferent in the glabrous skin of the hand, may be remarkably detailed and closely matching the properties of the afferent, indicating a high degree of specificity. Although this approach to bridge the gap between biophysical events in a single afferent and mental phenomena within the mind is simple and straight forward in principle it is demanding in practice for a number of reasons. Micro-stimulation has also been used to characterize individual motor units with regard to contraction properties.[ citation needed ]

Functional systems explored

Microneurography recordings have elucidated the organization as well as normal and pathological function of a fair number of neural systems in human. Recently, the technique has also been used in clinical situations for diagnostic purposes to clarify the condition of the individual patient. Three main groups of neural systems have been explored, i.e. proprioception, cutaneous sensibility, and sympathetic efferent activity.

Proprioception and motor control

Information from a variety of sense organs provides information about joint positions and movements. The most elaborate proprioceptive sense organ is the muscle spindle. It is unique because its functional state is continually controlled from the brain through the fusimotor system. Recordings from muscle spindle afferents indicate that the fusimotor system remains largely passive when the parent muscle is relaxed whereas is it regularly activated in voluntary contractions and more so the stronger the contraction. Thus microneurography suggests a parallelism between the two motor systems, i.e. the skeletomotor system controlling the ordinary muscle fibers and the fusimotor system. This seems to hold at least for weak contractions and small movements which have been explored so far. In contrast, more independent fusimotor activity has been reported in animal experiments, mainly cat hind limb, where larger movements are allowed. Thanks to fusimotor activation, the afferent signal from muscle spindles remains efficient in monitoring large changes of muscle length without turning silent during muscle shortening. On the other hand, very small intramuscular events are monitored as well, thanks to the extreme sensitivity of the sense organ. [8] An example is the small pulsatile component of the muscle contraction which is due to a periodic fluctuation at 8–10 Hz of the motor command. These small variations are insentient but readily monitored by the population of spindle afferents. They are akin to the tremor we may experience when emotionally excited. The functional significance of the insentient spindle response to faint intramuscular events remains to be assessed. However, it seems likely that detailed information on large as well as small mechanical events in the muscles is essential for neural systems in the brain to produce appropriate commands for dexterous movements.

Microneurography has demonstrated that our brains make use of detailed proprioceptive information not only by deep sense organs but by cutaneous mechanoreceptors as well. Any joint movement causing the slightest skin stretch is accurately monitored by cutaneous Ruffini endings in the skin area surrounding the joint. [9]

Cutaneous sensibility

Cutaneous sensibility includes a number of functions. Microneurography has been particularly used to investigate discriminative and affective touch mechanisms, as well as pain mechanisms, although afferents related to pruritus and temperature have been studied to some extent as well. A separate set of studies concern motor effects from cutaneous tactile afferents in the glabrous skin.

Discriminative touch

Two different tactile systems have been identified. A system for discriminative touch has been intensely studied since long whereas a system for affective touch was understood and explored more recently. Discriminative touch is based on large myelinated afferents from skin as well as afferents from deeper structures. This system allows us to extract detailed information on spatial and temporal features of any skin deformation as well as properties of physical objects such as size, shape, and surface structure. The glabrous skin of the human hand has a paramount role in discriminative touch. Thus the tactile organization of this skin area has therefore been extensively explored. [10] Altogether there are about 17,000 tactile afferents in the glabrous skin area of one hand. They are of four distinct types. Two kinds of afferents have small receptive fields suited for high spatial resolution (Merkel and Meissner). They are particularly numerous in the pulp of the finger, a region often engaged in exploration of object properties. Pacini units are extremely sensitive to fast movements whereas spatial resolution is poor. Ruffini units are characterized by high sensitivity to skin stretch and forces acting on the nails. Micro-stimulation has shown that input from one single Meissner, Merkel, or Pacini unit may produce a distinct and differential percept in the mind of the subject indicating an absolute specificity within the tactile system. It has even been demonstrated that a single impulse in a Meissner afferent may produce a percept. [11] In contrast, no percept is reported when a single Ruffini afferent is stimulated which might indicate that spatial summation is required. Consistent with the perceptive findings, neural responses in the somatosensory cortex have been recorded on micro-stimulation of single afferents connected to Meissner, Merkel, Pacini endings but not with single Ruffini afferents. On the basis of collateral studies in man and monkey a very tight match has been claimed between magnitude estimation of sensation of skin deformation, on the one hand, and response of Merkel afferents in the monkey, on the other. In man, deviations from such a linear relation was found in combined psychophysical and microneurography recordings. In the hairy skin Meissner units are lacking altogether. Instead there are hair follicle and field afferents which have large receptive fields while Merkel, Pacini, and Ruffini are present. Cutaneous Ruffini units in the hairy skin are important for position sense and kinesthesia as pointed out in another section. A caveat is justified with regard to end organ morphology. The four kinds of units considered above were physiologically identified in man (FA/RA and SA units, i.e. fast and slowly adapting type I and type II, ) whereas end organ morphology has been inferred on the basis of animal studies. Particularly, it seems likely that SAII afferents may be connected to other morphological structures than the classical Ruffini ending.

Affective touch

Light touch is coded not only in large myelinated afferents but in small unmyelinated afferents as well. Tactile C-afferents (CT) were described long ago in non-human species but did not attract much interest until it was shown that they are numerous in human hairy skin. In contrast, they are lacking altogether in glabrous skin. A number of findings from both normal subjects and from unique patients lacking large tactile afferents indicate that CT afferents are essential for the pleasurable aspect of friendly touch. [12]

Particularly, CT afferents respond vigorously to slow caressing movements, and, importantly, the size of the afferent response matches the sense of pleasure reported by the subject. fMRI studies of brain activity indicate that CT activate the insular cortex but not the primary or secondary somatosensory cortex consistent with the hypothesis that CT may play a role in emotional, behavioral, and hormonal responses to pleasant skin-to-skin contact between individuals.

Tactile afferents in motor control

It has been shown that tactile afferents from the glabrous skin of the hand exert profound effects on hand and finger muscles in the subconscious control of grip force whenever we lift and manipulate objects. [13] The friction between skin and object surface is extracted as soon as your fingers close around the object and contraction force of the muscles gripping the object is adjusted accordingly. Moreover, any tendency to slipping is monitored by tactile afferents and gives rise to swift reflexes resulting in subconscious adjustments of motor output. Many forms of dexterous handling of objects include successive phases of different motor activity. It has been shown that tactile sense organs in the glabrous skin are involved in timely linking the separated phases to a purposeful motor act.

Afferents responding to noxious stimuli are known as nociceptors. There are 2 main groups, unmyelinated C afferents and small myelinated Aδ fibers. Most studies are focused on C nociceptors. [14] The nociceptive C-fibers constitute a very large proportion of somatic afferent nerve fibers. There are two main groups: mechano-sensitive and mechano-insensitive C nociceptors. Mechano-sensitive C nociceptors, also known as polymodal C nociceptors are activated by several kinds of stimuli, i.e. mechanical, thermal, and chemical. The mechano-insensitive C nociceptors, also known as silent nociceptors, differ from polymodal afferents in other respects as well, e.g. they do not respond to heat or they have very high heat thresholds, receptive fields on the skin are larger, conduction velocity is slower, and activity-dependent slowing of conduction velocity of the axon is more pronounced. The mechano-insensitive nociceptors may be sensitized particularly by inflammatory mediators to render them mechano-responsive, a process that may account for the tenderness we experience following a physical injury. Moreover, electrical activation of C-mechano-insensitive fibers demonstrates that they have a role in neurogenic vasodilation which has not been found with polymodal nociceptors. It is suspected that the inflammatory mediators bind to protein receptors on mechano-insensitive nociceptors, but sensitization may also be caused by changes in gene expression that affect expression of transduction proteins. In either case, the sensitization of mechano-insensitive nociceptors has been observed to result in hyperalgesia, chronic pain. About ten percent of the afferents classified as mechano-insensitive nociceptors seem to constitute a group of “itch specific” units because they respond to pruritogen substances including histamine with an activity that corresponds to the sensation of itch.

Temperature sensibility

Thermoreceptors can be separated into two groups for warmth and cold detection. A subset of unmyelinated fibers are responsible for warmth detection. They are mechano-insensitive, low in number, and innervate small receptive fields. Aδ fibers are responsible for cold detection. However, there seems to be a subset of C-fibers that may function as cold-receptors along with A-fibers. Remarkably, these C-cold fibers seem to produce a sensation of unpleasant heat when there is no input from A-fibers. Altogether thermoreceptive afferents have not been studied as much as other systems.

Autonomic efferent activity

Spinal nerve Sympathetic ganglion multilingual Spinal nerve Sympathetic ganglion multilingual.svg
Spinal nerve Sympathetic ganglion multilingual

Microneurography exploration of sympathetic efferent system is unique from technical point of view as multiunit recordings have been very prosperous whereas single unit recording is essential with most other systems. Soon after microneurography was launched it was demonstrated that sympathetic activity is much different in muscle and skin nerves. [15] [16] [17] Instantaneous sympathetic activity in muscle nerves (MSA / MSNA) is heavily controlled by baroreflex mechanisms, resulting in a characteristic cardiac rhythmicity as well as a close and inverse relation to the small variations of blood pressure that normally occur continuously in phase with respiration. In contrast, the sympathetic activity in skin nerves (SSA/SSNA) lacks a tight relation to cardiac and respiratory events. On the other hand, sympathetic activity in skin nerves is dependent on a number of other mechanisms because changes are easily evoked e.g. by arousal, emotions, and ambient temperature changes, which stimuli are not effective with efferents in muscle nerves. These and other findings demonstrate that sympathetic efferent activity is highly differentiated, as individual effectors are governed by their own control systems and specific reflexes. The amount of muscular sympathetic activity, measured as number of bursts per 100 heart beats, varies considerably between subjects but, on the other hand, it is highly reproducible over time within the individual subject. However, there is some increase with age. Counter-intuitively, there seems to be only a weak and barely significant correlation between sympathetic efferent activity and hypertension as found in group studies. [18]

In 1998, microneurography recordings were performed for the first time on a spaceflight aboard the Space Shuttle Columbia with the purpose to explore the effect of microgravity on the human sympathetic nerve system. Two astronauts measured MSNA from peroneal nerves of their fellow astronauts. The findings support earlier observations that weightlessness results in a decrease of MSNA activity through a baroreflex mechanism. [19]

Strengths and limitations

The microneurography technique allows the recording of impulse activity of individual nerve fibers with absolute resolution in attending human subjects. Hence the subject is able to cooperate in various kinds of tests while the exact and complete information carried by the individual nerve fiber is monitored and offered for analysis of correlations between neural activity and physical or mental events. On the other hand, the particular physical conditions involving a microelectrode freely floating in the tissue preclude brisk and large movements because the exact electrode position is easily jeopardized. The experiment can be time-consuming when targeting deeply located nerves because the search procedure can be particularly demanding. However, accessing superficial subcutaneous nerves such as the superficial peroneal nerve on the dorsum of the foot is very rapid. This has permitted that the technique that was initially felt to be unsuited as a diagnostic test can now be applied for clinical purposes. Microneurography strength is in its unique power for exploration of normal neural mechanisms as well as pathophysiological conditions of various neurological disorders. Microneurography records intact axons in vivo and is minimally invasive. There have been no reports of persistent nerve damage. As a result, repeated recordings with the same subject are possible and longitudinal observations can be made. The technique has recently been used in clinical trials of new anti-neuropathic pain agents. During the recording, it is important to create an atmosphere of psychological confidence and to observe carefully the subject´s reactions so that the procedure can be adjusted accordingly. The technique requires training and skill and it is highly recommended to take up the method in an experienced laboratory where the method is regularly used.

See also

Related Research Articles

<span class="mw-page-title-main">Vagus nerve</span> Cranial nerve X, for visceral innervation

The vagus nerve, also known as the tenth cranial nerve, cranial nerve X, or simply CN X, is a cranial nerve that interfaces with the parasympathetic control of the heart, lungs, and digestive tract. It comprises two nerves—the left and right vagus nerves—but they are typically referred to collectively as a single subsystem. The vagus is the longest nerve of the autonomic nervous system in the human body and comprises both sensory and motor fibers. The sensory fibers originate from neurons of the nodose ganglion, whereas the motor fibers come from neurons of the dorsal motor nucleus of the vagus and the nucleus ambiguus. The vagus was also historically called the pneumogastric nerve.

<span class="mw-page-title-main">Parasympathetic nervous system</span> Division of the autonomic nervous system

The parasympathetic nervous system (PSNS) is one of the three divisions of the autonomic nervous system, the others being the sympathetic nervous system and the enteric nervous system. The enteric nervous system is sometimes considered part of the autonomic nervous system, and sometimes considered an independent system.

<span class="mw-page-title-main">Sympathetic nervous system</span> Division of the autonomic nervous system

The sympathetic nervous system is one of the three divisions of the autonomic nervous system, the others being the parasympathetic nervous system and the enteric nervous system. The enteric nervous system is sometimes considered part of the autonomic nervous system, and sometimes considered an independent system.

<span class="mw-page-title-main">Facial nerve</span> Cranial nerve VII, for the face and tasting

The facial nerve, also known as the seventh cranial nerve, cranial nerve VII, or simply CN VII, is a cranial nerve that emerges from the pons of the brainstem, controls the muscles of facial expression, and functions in the conveyance of taste sensations from the anterior two-thirds of the tongue. The nerve typically travels from the pons through the facial canal in the temporal bone and exits the skull at the stylomastoid foramen. It arises from the brainstem from an area posterior to the cranial nerve VI and anterior to cranial nerve VIII.

<span class="mw-page-title-main">Spinal nerve</span> Nerve that carries signals between the spinal cord and the body

A spinal nerve is a mixed nerve, which carries motor, sensory, and autonomic signals between the spinal cord and the body. In the human body there are 31 pairs of spinal nerves, one on each side of the vertebral column. These are grouped into the corresponding cervical, thoracic, lumbar, sacral and coccygeal regions of the spine. There are eight pairs of cervical nerves, twelve pairs of thoracic nerves, five pairs of lumbar nerves, five pairs of sacral nerves, and one pair of coccygeal nerves. The spinal nerves are part of the peripheral nervous system.

<span class="mw-page-title-main">Itch</span> Sensation that causes the desire or reflex to scratch

Itch is a sensation that causes the desire or reflex to scratch. Itch has resisted many attempts to be classified as any one type of sensory experience. Itch has many similarities to pain, and while both are unpleasant sensory experiences, their behavioral response patterns are different. Pain creates a withdrawal reflex, whereas itch leads to a scratch reflex.

<span class="mw-page-title-main">Afferent nerve fiber</span> Axonal projections that arrive at a particular brain region

Afferent nerve fibers are the axons carried by a sensory nerve that relay sensory information from sensory receptors to regions of the brain. Afferent projections arrive at a particular brain region. Efferent nerve fibers are carried by efferent nerves and exit a region to act on muscles and glands.

<span class="mw-page-title-main">Efferent nerve fiber</span> Axonal projections that exit a particular region

Efferent nerve fibers refer to axonal projections that exit a particular region; as opposed to afferent projections that arrive at the region. These terms have a slightly different meaning in the context of the peripheral nervous system (PNS) and central nervous system (CNS). The efferent fiber is a long process projecting far from the neuron's body that carries nerve impulses away from the central nervous system toward the peripheral effector organs. A bundle of these fibers is called an efferent nerve. The opposite direction of neural activity is afferent conduction, which carries impulses by way of the afferent nerve fibers of sensory neurons.

<span class="mw-page-title-main">Reflex arc</span> Neural pathway which controls a reflex

A reflex arc is a neural pathway that controls a reflex. In vertebrates, most sensory neurons do not pass directly into the brain, but synapse in the spinal cord. This allows for faster reflex actions to occur by activating spinal motor neurons without the delay of routing signals through the brain. The brain will receive the input while the reflex is being carried out and the analysis of the signal takes place after the reflex action.

<span class="mw-page-title-main">Free nerve ending</span> Type of nerve fiber carrying sensory signals

A free nerve ending (FNE) or bare nerve ending, is an unspecialized, afferent nerve fiber sending its signal to a sensory neuron. Afferent in this case means bringing information from the body's periphery toward the brain. They function as cutaneous nociceptors and are essentially used by vertebrates to detect noxious stimuli that often result in pain.

A cutaneous receptor is the type of sensory receptor found in the skin. They are a part of the somatosensory system. Cutaneous receptors include mechanoreceptors, nociceptors (pain), and thermoreceptors (temperature).

A mechanoreceptor, also called mechanoceptor, is a sensory receptor that responds to mechanical pressure or distortion. Mechanoreceptors are innervated by sensory neurons that convert mechanical pressure into electrical signals that, in animals, are sent to the central nervous system.

<span class="mw-page-title-main">Nociceptor</span> Sensory neuron that detects pain

A nociceptor is a sensory neuron that responds to damaging or potentially damaging stimuli by sending "possible threat" signals to the spinal cord and the brain. The brain creates the sensation of pain to direct attention to the body part, so the threat can be mitigated; this process is called nociception.

<span class="mw-page-title-main">Sensory neuron</span> Nerve cell that converts environmental stimuli into corresponding internal stimuli

Sensory neurons, also known as afferent neurons, are neurons in the nervous system, that convert a specific type of stimulus, via their receptors, into action potentials or graded potentials. This process is called sensory transduction. The cell bodies of the sensory neurons are located in the dorsal ganglia of the spinal cord.

<span class="mw-page-title-main">Chronaxie</span> Electrophysiology metric

Chronaxie is the minimum time required for an electric current double the strength of the rheobase to stimulate a muscle or a neuron. Rheobase is the lowest intensity with indefinite pulse duration which just stimulated muscles or nerves. Chronaxie is dependent on the density of voltage-gated sodium channels in the cell, which affect that cell’s excitability. Chronaxie varies across different types of tissue: fast-twitch muscles have a lower chronaxie, slow-twitch muscles have a higher one. Chronaxie is the tissue-excitability parameter that permits choice of the optimum stimulus pulse duration for stimulation of any excitable tissue. Chronaxie (c) is the Lapicque descriptor of the stimulus pulse duration for a current of twice rheobasic (b) strength, which is the threshold current for an infinitely long-duration stimulus pulse. Lapicque showed that these two quantities (c,b) define the strength-duration curve for current: I = b(1+c/d), where d is the pulse duration. However, there are two other electrical parameters used to describe a stimulus: energy and charge. The minimum energy occurs with a pulse duration equal to chronaxie. Minimum charge (bc) occurs with an infinitely short-duration pulse. Choice of a pulse duration equal to 10c requires a current of only 10% above rheobase (b). Choice of a pulse duration of 0.1c requires a charge of 10% above the minimum charge (bc).

A cutaneous nerve is a nerve that provides nerve supply to the skin.

<span class="mw-page-title-main">Group C nerve fiber</span> One of three classes of nerve fiber in the central nervous system and peripheral nervous system

Group C nerve fibers are one of three classes of nerve fiber in the central nervous system (CNS) and peripheral nervous system (PNS). The C group fibers are unmyelinated and have a small diameter and low conduction velocity, whereas Groups A and B are myelinated. Group C fibers include postganglionic fibers in the autonomic nervous system (ANS), and nerve fibers at the dorsal roots. These fibers carry sensory information.

<span class="mw-page-title-main">Axon reflex</span>

The axon reflex is the response stimulated by peripheral nerves of the body that travels away from the nerve cell body and branches to stimulate target organs. Reflexes are single reactions that respond to a stimulus making up the building blocks of the overall signaling in the body's nervous system. Neurons are the excitable cells that process and transmit these reflex signals through their axons, dendrites, and cell bodies. Axons directly facilitate intercellular communication projecting from the neuronal cell body to other neurons, local muscle tissue, glands and arterioles. In the axon reflex, signaling starts in the middle of the axon at the stimulation site and transmits signals directly to the effector organ skipping both an integration center and a chemical synapse present in the spinal cord reflex. The impulse is limited to a single bifurcated axon, or a neuron whose axon branches into two divisions and does not cause a general response to surrounding tissue.

A peripheral nerve interface is the bridge between the peripheral nervous system and a computer interface which serves as a bi‐directional information transducer recording and sending signals between the human body and a machine processor. Interfaces to the nervous system usually take the form of electrodes for stimulation and recording, though chemical stimulation and sensing are possible. Research in this area is focused on developing peripheral nerve interfaces for the restoration of function following disease or injury to minimize associated losses. Peripheral nerve interfaces also enable electrical stimulation and recording of the peripheral nervous system to study the form and function of the peripheral nervous system. For example, recent animal studies have demonstrated high accuracy in tracking physiological meaningful measures, like joint angle. Many researchers also focus in the area of neuroprosthesis, linking the human nervous system to bionics in order to mimic natural sensorimotor control and function. Successful implantation of peripheral nerve interfaces depend on a number of factors which include appropriate indication, perioperative testing, differentiated planning, and functional training. Typically microelectrode devices are implanted adjacent to, around or within the nerve trunk to establish contact with the peripheral nervous system. Different approaches may be used depending on the type of signal desired and attainable.

C tactile afferents are nerve receptors in mammalian skin that generally respond to nonpainful stimulation such as light touch. For this reason they are classified as ‘low-threshold mechanoreceptors’. As group C nerve fibers, they are unmyelinated and have slow conduction velocities. They are mostly associated with the sensation of pleasant touch, though they may also mediate some forms of pain. CT afferents were discovered by Åke Vallbo using the technique of microneurography.

References

  1. Hensel, H; Boman KKA (1960). "Afferent impulses in cutaneous sensory nerves in human subjects". Journal of Neurophysiology. 23 (5): 564–578. doi:10.1152/jn.1960.23.5.564. PMID   13713454.
  2. Hagbarth, K-E; Vallbo ÅB (1968). "Discharge characteristics of human muscle afferents during muscle stretch and contraction". Experimental Neurology. 22 (4): 674–694. doi:10.1016/0014-4886(68)90156-8. PMID   4237061.
  3. Vallbo, ÅB; Hagbarth K-E (1968). "Activity from skin mechanoreceptors recorded percutaneously in awake human subjects". Experimental Neurology. 21 (3): 270–289. doi:10.1016/0014-4886(68)90041-1. PMID   5673644.
  4. Hagbarth, K-E; Vallbo ÅB (1968). "Pulse and respiratory grouping of sympathetic impulses in human muscle nerves". Acta Physiologica Scandinavica. 74 (1–2): 96–108. doi:10.1111/j.1748-1716.1968.tb04218.x. PMID   4235387.
  5. Knutsson, E; Widén L (1967). "Impulses from single nerve fibres recorded in man using microelectrodes". Nature. 213 (5076): 606–607. Bibcode:1967Natur.213..606K. doi:10.1038/213606a0. PMID   6032256. S2CID   4277413.
  6. Curry, Timothy B.; Charkoudian, Nisha (2011). "The use of real-time ultrasound in microneurography". Autonomic Neuroscience. 162 (1–2): 89–93. doi:10.1016/j.autneu.2011.03.007. PMC   3111900 . PMID   21514900.
  7. Weidner, C.; Schmidt, R.; Schmeltz, M.; Hilliges, M.; Handwerker, H.O.; Torebjörk, H.E. (2000). "Time course of post-excitatory effects separates afferent human C fibre classes". Journal of Physiology. 527 (1): 185–191. doi:10.1111/j.1469-7793.2000.00185.x. PMC   2270064 . PMID   10944181.
  8. Wessberg, Johan; Vallbo, Åke B. (1995). "Coding of pulsatile motor output by human muscle afferents during slow finger movements". Journal of Physiology. 485 (Pt 1): 271–282. doi:10.1113/jphysiol.1995.sp020729. PMC   1157989 . PMID   7658380.
  9. Edin, Benoni B.; Johansson, Niclas (1995). "Skin strain patterns provide kinaesthetic information to the human central nervous system". Journal of Physiology. 487 (1): 243–251. doi:10.1113/jphysiol.1995.sp020875. PMC   1156613 . PMID   7473253.
  10. Vallbo, A.B.; Johansson, Roland S. (1984). "Properties of cutaneous mechanoreceptors in the human hand related to touch sensation". Human Neurobiology. 3 (1): 3–14. PMID   6330008.
  11. Johansson, Roland S.; Vallbo, Åke B. (1979). "Detection of tactile stimuli. Thresholds of afferent units related to psychophysical thresholds in the human hand". Journal of Physiology. 297: 405–422. doi:10.1113/jphysiol.1979.sp013048. PMC   1458728 . PMID   536918.
  12. Olausson, H.; Wessberg, J; Morrison, I; McGlone, F; Vallbo, A (2010). "The neurophysiology of unmyelinated tactile afferents". Neuroscience & Biobehavioral Reviews. 34 (2): 185–191. doi:10.1016/j.neubiorev.2008.09.011. PMID   18952123. S2CID   29812933.
  13. Flanagan, J. Randall; Bowman, Miles C.; Roland S., Johansson (2006). "Control strategies in object manipulation tasks". Current Opinion in Neurobiology. 16 (6): 650–659. doi:10.1016/j.conb.2006.10.005. PMID   17084619. S2CID   14748404.
  14. Schmelz, M.; Schmidt, R. (2010). "Microneurographic single-unit recordings to assess receptive properties of afferent human C-fibers". Neuroscience Letters. 470 (3): 158–61. doi:10.1016/j.neulet.2009.05.064. PMID   19481585. S2CID   1323386.
  15. Mano, Tadaaki; Iwase, Satoshi; Toma, Shinobu (2006). "Microneurography as a tool in clinical neurophysiology to investigate peripheral neural traffic in humans". Clinical Neurophysiology. 117 (11): 2357–84. doi:10.1016/j.clinph.2006.06.002. PMID   16904937. S2CID   22258173.
  16. Mano, Tadaaki (1998). "Microneurographic Research on Sympathetic Nerve Responses to Environmental Stimuli in Humans". The Japanese Journal of Physiology. 48 (2): 99–114. doi: 10.2170/jjphysiol.48.99 . PMID   9639545.
  17. Wallin, B. Gunnar; Charkoudian, Nisha (2007). "Sympathetic neural control of integrated cardiovascular function: Insights from measurement of human sympathetic nerve activity". Muscle & Nerve. 36 (5): 595–614. doi:10.1002/mus.20831. PMID   17623856. S2CID   23974017.
  18. Hart, E.C.; Joyner, M.J.; Wallin, B.G.; Charkoudian, N. (2012). "Sex, ageing and resting blood pressure: gaining insights from the integrated balance of neural and haemodynamic factors". Journal of Physiology. 590 (9): 2069–2079. doi:10.1113/jphysiol.2011.224642. PMC   3447151 . PMID   22351633.
  19. Mano, T (2009). "Microneurography--from basic aspects to clinical applications and application in space medicine". Brain and Nerve. 61 (3): 227–42. PMID   19301593.

Further reading