MutS-1

Last updated
MutS_I
PDB 1oh6 EBI.jpg
The crystal structure of E. coli MutS binding to DNA with an a:a mismatch
Identifiers
SymbolMutS_I
Pfam PF01624
InterPro IPR007695
SMART MUTSd
PROSITE PDOC00388
SCOP2 1ng9 / SCOPe / SUPFAM

MutS is a mismatch DNA repair protein, originally described in Escherichia coli .

Mismatch repair contributes to the overall fidelity of DNA replication and is essential for combating the adverse effects of damage to the genome. It involves the correction of mismatched base pairs that have been missed by the proofreading element (Klenow fragment) of the DNA polymerase complex. The post-replicative Mismatch Repair System (MMRS) of Escherichia coli involves MutS (Mutator S), MutL and MutH proteins, and acts to correct point mutations or small insertion/deletion loops produced during DNA replication. [1]

MutS and MutL are involved in preventing recombination between partially homologous DNA sequences. The assembly of MMRS is initiated by MutS, which recognizes and binds to mispaired nucleotides and allows further action of MutL and MutH to eliminate a portion of newly synthesized DNA strand containing the mispaired base. [2] MutS can also collaborate with methyltransferases in the repair of O(6)-methylguanine damage, which would otherwise pair with thymine during replication to create an O(6)mG:T mismatch. [3] MutS exists as a dimer, where the two monomers have different conformations and form a heterodimer at the structural level. [4] Only one monomer recognises the mismatch specifically and has ADP bound. Non-specific major groove DNA-binding domains from both monomers embrace the DNA in a clamp-like structure. Mismatch binding induces ATP uptake and a conformational change in the MutS protein, resulting in a clamp that translocates on DNA.

MutS is a modular protein with a complex structure, [5] and is composed of:

Homologues of MutS have been found in many species including eukaryotes (MSH 1, 2, 3, 4, 5, and 6 proteins), archaea and bacteria, and together these proteins have been grouped into the MutS family. Although many of these proteins have similar activities to the E. coli MutS, there is significant diversity of function among the MutS family members. This diversity is even seen within species, where many species encode multiple MutS homologues with distinct functions. [6] Inter-species homologues may have arisen through frequent ancient horizontal gene transfer of MutS (and MutL) from bacteria to archaea and eukaryotes via endosymbiotic ancestors of mitochondria and chloroplasts. [7]

This entry represents the N-terminal domain of proteins in the MutS family of DNA mismatch repair proteins, as well as closely related proteins. The N-terminal domain of MutS is responsible for mismatch recognition and forms a 6-stranded mixed beta-sheet surrounded by three alpha-helices, which is similar to the structure of tRNA endonuclease. Yeast MSH3, [8] bacterial proteins involved in DNA mismatch repair, and the predicted protein product of the Rep-3 gene of mouse share extensive sequence similarity. Human MSH has been implicated in non-polyposis colorectal carcinoma (HNPCC) and is a mismatch binding protein.

Related Research Articles

DNA polymerase

A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create two identical DNA duplexes from a single original DNA duplex. During this process, DNA polymerase "reads" the existing DNA strands to create two new strands that match the existing ones. These enzymes catalyze the chemical reaction

DnaG is a bacterial DNA primase and is encoded by the dnaG gene. The enzyme DnaG, and any other DNA primase, synthesizes short strands of RNA known as oligonucleotides during DNA replication. These oligonucleotides are known as primers because they act as a starting point for DNA synthesis. DnaG catalyzes the synthesis of oligonucleotides that are 10 to 60 nucleotides long, however most of the oligonucleotides synthesized are 11 nucleotides. These RNA oligonucleotides serve as primers, or starting points, for DNA synthesis by bacterial DNA polymerase III. DnaG is important in bacterial DNA replication because DNA polymerase cannot initiate the synthesis of a DNA strand, but can only add nucleotides to a preexisting strand. DnaG synthesizes a single RNA primer at the origin of replication. This primer serves to prime leading strand DNA synthesis. For the other parental strand, the lagging strand, DnaG synthesizes an RNA primer every few kilobases (kb). These primers serve as substrates for the synthesis of Okazaki fragments.

dnaQ is the gene encoding the ε subunit of DNA polymerase III in Escherichia coli. The ε subunit is one of three core proteins in the DNA polymerase complex. It functions as a 3’→5’ DNA directed proofreading exonuclease that removes incorrectly incorporated bases during replication. dnaQ may also be referred to as mutD.

DNA repair Cellular mechanism

DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA damage, resulting in as many as 1 million individual molecular lesions per cell per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions induce potentially harmful mutations in the cell's genome, which affect the survival of its daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. When normal repair processes fail, and when cellular apoptosis does not occur, irreparable DNA damage may occur, including double-strand breaks and DNA crosslinkages. This can eventually lead to malignant tumors, or cancer as per the two hit hypothesis.

DNA mismatch repair

DNA mismatch repair (MMR) is a system for recognizing and repairing erroneous insertion, deletion, and mis-incorporation of bases that can arise during DNA replication and recombination, as well as repairing some forms of DNA damage.

DNA polymerase II

DNA polymerase II is a prokaryotic DNA-Dependent DNA polymerase encoded by the PolB gene.

UvrABC endonuclease is a multienzyme complex in bacteria involved in DNA repair by nucleotide excision repair, and it is, therefore, sometimes called an excinuclease. This UvrABC repair process, sometimes called the short-patch process, involves the removal of twelve nucleotides where a genetic mutation has occurred followed by a DNA polymerase, replacing these aberrant nucleotides with the correct nucleotides and completing the DNA repair. The subunits for this enzyme are encoded in the uvrA, uvrB, and uvrC genes. This enzyme complex is able to repair many different types of damage, including cyclobutyl dimer formation.

Proliferating cell nuclear antigen

Proliferating cell nuclear antigen (PCNA) is a DNA clamp that acts as a processivity factor for DNA polymerase δ in eukaryotic cells and is essential for replication. PCNA is a homotrimer and achieves its processivity by encircling the DNA, where it acts as a scaffold to recruit proteins involved in DNA replication, DNA repair, chromatin remodeling and epigenetics.

DNA clamp

A DNA clamp, also known as a sliding clamp or β-clamp, is a protein complex that serves as a processivity-promoting factor in DNA replication. As a critical component of the DNA polymerase III holoenzyme, the clamp protein binds DNA polymerase and prevents this enzyme from dissociating from the template DNA strand. The clamp-polymerase protein–protein interactions are stronger and more specific than the direct interactions between the polymerase and the template DNA strand; because one of the rate-limiting steps in the DNA synthesis reaction is the association of the polymerase with the DNA template, the presence of the sliding clamp dramatically increases the number of nucleotides that the polymerase can add to the growing strand per association event. The presence of the DNA clamp can increase the rate of DNA synthesis up to 1,000-fold compared with a nonprocessive polymerase.

DNA adenine methylase Prokaryotic enzyme

DNA adenine methylase, (Dam methylase) is an enzyme that adds a methyl group to the adenine of the sequence 5'-GATC-3' in newly synthesized DNA. Immediately after DNA synthesis, the daughter strand remains unmethylated for a short time. It is an orphan methyltransferase that is not part of a restriction-modification system and regulates gene expression. This enzyme catalyses the following chemical reaction

MSH2

DNA mismatch repair protein Msh2 also known as MutS homolog 2 or MSH2 is a protein that in humans is encoded by the MSH2 gene, which is located on chromosome 2. MSH2 is a tumor suppressor gene and more specifically a caretaker gene that codes for a DNA mismatch repair (MMR) protein, MSH2, which forms a heterodimer with MSH6 to make the human MutSα mismatch repair complex. It also dimerizes with MSH3 to form the MutSβ DNA repair complex. MSH2 is involved in many different forms of DNA repair, including transcription-coupled repair, homologous recombination, and base excision repair.

MSH6

MSH6 or mutS homolog 6 is a gene that codes for DNA mismatch repair protein Msh6 in the budding yeast Saccharomyces cerevisiae. It is the homologue of the human "G/T binding protein," (GTBP) also called p160 or hMSH6. The MSH6 protein is a member of the Mutator S (MutS) family of proteins that are involved in DNA damage repair.

MSH3

DNA mismatch repair protein, MutS Homolog 3 (MSH3) is a human homologue of the bacterial mismatch repair protein MutS that participates in the mismatch repair (MMR) system. MSH3 typically forms the heterodimer MutSβ with MSH2 in order to correct long insertion/deletion loops and base-base mispairs in microsatellites during DNA synthesis. Deficient capacity for MMR is found in approximately 15% of colorectal cancers, and somatic mutations in the MSH3 gene can be found in nearly 50% of MMR-deficient colorectal cancers.

MSH4

MutS protein homolog 4 is a protein that in humans is encoded by the MSH4 gene.

Replication terminator Tus family

Tus, also known as terminus utilization substance, is a protein that binds to terminator sequences and acts as a counter-helicase when it comes in contact with an advancing helicase. The bound Tus protein effectively halts DNA polymerase movement. Tus helps end DNA replication in prokaryotes.

SeqA protein

In molecular biology the SeqA protein is found in bacteria and archaea. The function of this protein is highly important in DNA replication. The protein negatively regulates the initiation of DNA replication at the origin of replication, in Escherichia coli, OriC. Additionally the protein plays a further role in sequestration. The importance of this protein is vital, without its help in DNA replication, cell division and other crucial processes could not occur. This protein domain is thought to be part of a much larger protein complex which includes other proteins such as SeqB.

In DNA repair, the Ada regulon is a set of genes whose expression is essential to adaptive response, which is triggered in prokaryotic cells by exposure to sub-lethal doses of alkylating agents. This allows the cells to tolerate the effects of such agents, which are otherwise toxic and mutagenic.

Single-stranded binding protein

Single-stranded binding proteins (SSBs) are a class of proteins that have been identified in both viruses and organisms from bacteria to humans.

Single-strand DNA-binding protein (SSB) is a protein found in Escherichia coli bacteria, that binds to single-stranded regions of deoxyribonucleic acid (DNA). Single-stranded DNA is produced during all aspects of DNA metabolism: replication, recombination, and repair. As well as stabilizing this single-stranded DNA, SSB proteins bind to and modulate the function of numerous proteins involved in all of these processes.

GrpE

GrpE is a bacterial nucleotide exchange factor that is important for regulation of protein folding machinery, as well as the heat shock response. It is a heat-inducible protein and during stress it prevents unfolded proteins from accumulating in the cytoplasm. Accumulation of unfolded proteins in the cytoplasm can lead to cell death.

References

  1. Nag N, Rao BJ, Krishnamoorthy G (November 2007). "Altered dynamics of DNA bases adjacent to a mismatch: a cue for mismatch recognition by MutS". J. Mol. Biol. 374 (1): 39–53. doi:10.1016/j.jmb.2007.08.065. PMID   17919654.
  2. Miguel V, Pezza RJ, Argaraña CE (August 2007). "The C-terminal region of Escherichia coli MutS and protein oligomerization". Biochem. Biophys. Res. Commun. 360 (2): 412–7. doi:10.1016/j.bbrc.2007.06.056. PMID   17599803.
  3. Rye PT, Delaney JC, Netirojjanakul C, Sun DX, Liu JZ, Essigmann JM (February 2008). "Mismatch repair proteins collaborate with methyltransferases in the repair of O(6)-methylguanine". DNA Repair (Amst.). 7 (2): 170–6. doi:10.1016/j.dnarep.2007.09.003. PMC   3015234 . PMID   17951114.
  4. Mendillo ML, Putnam CD, Kolodner RD (June 2007). "Escherichia coli MutS tetramerization domain structure reveals that stable dimers but not tetramers are essential for DNA mismatch repair in vivo". J. Biol. Chem. 282 (22): 16345–54. doi: 10.1074/jbc.M700858200 . PMID   17426027.
  5. Lamers MH, Perrakis A, Enzlin JH, Winterwerp HH, de Wind N, Sixma TK (October 2000). "The crystal structure of DNA mismatch repair protein MutS binding to a G x T mismatch". Nature. 407 (6805): 711–7. doi:10.1038/35037523. PMID   11048711. S2CID   4431622.
  6. Eisen JA (September 1998). "A phylogenomic study of the MutS family of proteins". Nucleic Acids Res. 26 (18): 4291–300. doi:10.1093/nar/26.18.4291. PMC   147835 . PMID   9722651.
  7. Lin Z, Nei M, Ma H (2007). "The origins and early evolution of DNA mismatch repair genes--multiple horizontal gene transfers and co-evolution". Nucleic Acids Res. 35 (22): 7591–603. doi:10.1093/nar/gkm921. PMC   2190696 . PMID   17965091.
  8. New L, Liu K, Crouse GF (May 1993). "The yeast gene MSH3 defines a new class of eukaryotic MutS homologues". Mol. Gen. Genet. 239 (1–2): 97–108. doi:10.1007/BF00281607. PMID   8510668. S2CID   24113631.
This article incorporates text from the public domain Pfam and InterPro: IPR007695