N-acetyl-1-D-myo-inositol-2-amino-2-deoxy-alpha-D-glucopyranoside deacetylase

Last updated
N-acetyl-1-D-myo-inositol-2-amino-2-deoxy-alpha-D-glucopyranoside deacetylase
Identifiers
EC no. 3.5.1.103
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

N-acetyl-1-D-myo-inositol-2-amino-2-deoxy-alpha-D-glucopyranoside deacetylase (EC 3.5.1.103, MshB) is an enzyme with systematic name 1-(2-acetamido-2-deoxy-alpha-D-glucopyranosyl)-1D-myo-inositol acetylhydrolase. [1] [2] [3] This enzyme catalyses the following chemical reaction

1-(2-acetamido-2-deoxy-alpha-D-glucopyranosyl)-1D-myo-inositol + H2O 1-(2-amino-2-deoxy-alpha-D-glucopyranoside)-1D-myo-inositol + acetate

This enzyme mediates the rate limiting step in the mycothiol biosynthesis pathway.

Related Research Articles

In enzymology, a mycothiol-dependent formaldehyde dehydrogenase (EC 1.1.1.306) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Inositol-3-phosphate synthase</span>

In enzymology, an inositol-3-phosphate synthase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">N-acetylglucosamine-6-phosphate deacetylase</span>

In enzymology, N-acetylglucosamine-6-phosphate deacetylase (EC 3.5.1.25), also known as GlcNAc-6-phosphate deacetylase or NagA, is an enzyme that catalyzes the deacetylation of N-acetylglucosamine-6-phosphate (GlcNAc-6-P) to glucosamine-6-phosphate (GlcN-6-P):

In enzymology, a N-acetylglucosaminylphosphatidylinositol deacetylase (EC 3.5.1.89) is an enzyme that catalyzes the chemical reaction

In enzymology, a 1D-1-guanidino-3-amino-1,3-dideoxy-scyllo-inositol transaminase is an enzyme that catalyzes the chemical reaction

In enzymology, a dolichyl-phosphate alpha-N-acetylglucosaminyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a galactinol-raffinose galactosyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a galactinol-sucrose galactosyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, an indolylacetylinositol arabinosyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a phosphatidylinositol N-acetylglucosaminyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Ribostamycin</span> Aminoglycoside antibiotic

Ribostamycin is an aminoglycoside-aminocyclitol antibiotic isolated from a streptomycete, Streptomyces ribosidificus, originally identified in a soil sample from Tsu City of Mie Prefecture in Japan. It is made up of 3 ring subunits: 2-deoxystreptamine (DOS), neosamine C, and ribose. Ribostamycin, along with other aminoglycosides with the DOS subunit, is an important broad-spectrum antibiotic with important use against human immunodeficiency virus and is considered a critically important antimicrobial by the World Health Organization., Resistance against aminoglycoside antibiotics, such as ribostamycin, is a growing concern. The resistant bacteria contain enzymes that modify the structure through phosphorylation, adenylation, and acetylation and prevent the antibiotic from being able to interact with the bacterial ribosomal RNAs.

<span class="mw-page-title-main">Mycothiol</span> Chemical compound

Mycothiol is an unusual thiol compound found in the Actinomycetota. It is composed of a cysteine residue with an acetylated amino group linked to glucosamine, which is then linked to inositol. The oxidized, disulfide form of mycothiol (MSSM) is called mycothione, and is reduced to mycothiol by the flavoprotein mycothione reductase. Mycothiol biosynthesis and mycothiol-dependent enzymes such as mycothiol-dependent formaldehyde dehydrogenase and mycothione reductase have been proposed to be good drug targets for the development of treatments for tuberculosis.

UDP-N-acetyl-2-amino-2-deoxyglucuronate dehydrogenase (EC 1.1.1.335, WlbA, WbpB) is an enzyme with systematic name UDP-N-acetyl-2-amino-2-deoxy-alpha-D-glucuronate:NAD+ 3-oxidoreductase. This enzyme catalyses the following chemical reaction:

Mycothiol synthase is an enzyme with systematic name acetyl-CoA:desacetylmycothiol O-acetyltransferase. This enzyme catalyses the following chemical reaction

UDP-2-acetamido-3-amino-2,3-dideoxy-glucuronate N-acetyltransferase is an enzyme with systematic name acetyl-CoA:UDP-2-acetamido-3-amino-2,3-dideoxy-alpha-D-glucuronate N-acetyltransferase. This enzyme catalyses the following chemical reaction

D-inositol-3-phosphate glycosyltransferase is an enzyme with systematic name UDP-N-acetyl-D-glucosamine:1D-myo-inositol 3-phosphate alpha-D-glycosyltransferase. This enzyme catalyses the following chemical reaction

UDP-2-acetamido-2-deoxy-ribo-hexuluronate aminotransferase is an enzyme with systematic name UDP-2-acetamido-3-amino-2,3-dideoxy-alpha-D-glucuronate:2-oxoglutarate aminotransferase. This enzyme catalyses the following chemical reaction

MSHB may refer to:

Chitin disaccharide deacetylase (EC 3.5.1.105, chitobiose amidohydolase, COD, chitin oligosaccharide deacetylase, chitin oligosaccharide amidohydolase) is an enzyme with systematic name 2-(acetylamino)-4-O-(2-(acetylamino)-2-deoxy-beta-D-glucopyranosyl)-2-deoxy-D-glucopyranose acetylhydrolase. This enzyme catalyses the following chemical reaction

L-cysteine:1D-myo-inositol 2-amino-2-deoxy-alpha-D-glucopyranoside ligase is an enzyme with systematic name L-cysteine:1-O-(2-amino-2-deoxy-alpha-D-glucopyranosyl)-1D-myo-inositol ligase (AMP-forming). This enzyme catalyses the following chemical reaction

References

  1. Rawat M, Kovacevic S, Billman-Jacobe H, Av-Gay Y (May 2003). "Inactivation of mshB, a key gene in the mycothiol biosynthesis pathway in Mycobacterium smegmatis". Microbiology. 149 (Pt 5): 1341–9. doi: 10.1099/mic.0.26084-0 . PMID   12724395.
  2. Newton GL, Av-Gay Y, Fahey RC (December 2000). "N-Acetyl-1-D-myo-inosityl-2-amino-2-deoxy-alpha-D-glucopyranoside deacetylase (MshB) is a key enzyme in mycothiol biosynthesis". Journal of Bacteriology. 182 (24): 6958–63. doi:10.1128/jb.182.24.6958-6963.2000. PMC   94821 . PMID   11092856.
  3. Maynes JT, Garen C, Cherney MM, Newton G, Arad D, Av-Gay Y, Fahey RC, James MN (November 2003). "The crystal structure of 1-D-myo-inosityl 2-acetamido-2-deoxy-alpha-D-glucopyranoside deacetylase (MshB) from Mycobacterium tuberculosis reveals a zinc hydrolase with a lactate dehydrogenase fold". The Journal of Biological Chemistry. 278 (47): 47166–70. doi: 10.1074/jbc.m308914200 . PMID   12958317.