N-formylmaleamate deformylase

Last updated
N-formylmaleamate deformylase
Identifiers
EC no. 3.5.1.106
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

N-formylmaleamate deformylase (EC 3.5.1.106, NicD) is an enzyme with systematic name N-formylmaleamic acid amidohydrolase. [1] This enzyme catalyses the following chemical reaction

N-formylmaleamic acid + H2O maleamate + formate

The reaction is involved in the aerobic catabolism of nicotinic acid.

Related Research Articles

<span class="mw-page-title-main">Nicotinamide</span> Dietary supplement and medication

Niacinamide or nicotinamide is a form of vitamin B3 found in food and used as a dietary supplement and medication. As a supplement, it is used by mouth to prevent and treat pellagra (niacin deficiency). While nicotinic acid (niacin) may be used for this purpose, niacinamide has the benefit of not causing skin flushing. As a cream, it is used to treat acne. It is a water-soluble vitamin. Niacinamide is the supplement name while nicotinamide is the scientific name.

<span class="mw-page-title-main">Cellular respiration</span> Process to convert glucose to ATP in cells

Cellular respiration is the process by which biological fuels are oxidised in the presence of an inorganic electron acceptor, such as oxygen, to drive the bulk production of adenosine triphosphate (ATP), which contains energy. Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from nutrients into ATP, and then release waste products.

A salvage pathway is a pathway in which a biological product is produced from intermediates in the degradative pathway of its own or a similar substance. The term often refers to nucleotide salvage in particular, in which nucleotides are synthesized from intermediates in their degradative pathway.

<span class="mw-page-title-main">Benzylamine</span> Chemical compound

Benzylamine is an organic chemical compound with the condensed structural formula C6H5CH2NH2 (sometimes abbreviated as PhCH2NH2 or BnNH2). It consists of a benzyl group, C6H5CH2, attached to an amine functional group, NH2. This colorless water-soluble liquid is a common precursor in organic chemistry and used in the industrial production of many pharmaceuticals. The hydrochloride salt was used to treat motion sickness on the Mercury-Atlas 6 mission in which NASA astronaut John Glenn became the first American to orbit the Earth.

In biochemistry, fatty acid synthesis is the creation of fatty acids from acetyl-CoA and NADPH through the action of enzymes called fatty acid synthases. This process takes place in the cytoplasm of the cell. Most of the acetyl-CoA which is converted into fatty acids is derived from carbohydrates via the glycolytic pathway. The glycolytic pathway also provides the glycerol with which three fatty acids can combine to form triglycerides, the final product of the lipogenic process. When only two fatty acids combine with glycerol and the third alcohol group is phosphorylated with a group such as phosphatidylcholine, a phospholipid is formed. Phospholipids form the bulk of the lipid bilayers that make up cell membranes and surrounds the organelles within the cells.

<span class="mw-page-title-main">Flavin-containing monooxygenase 3</span> Protein-coding gene in the species Homo sapiens

Flavin-containing monooxygenase 3 (FMO3), also known as dimethylaniline monooxygenase [N-oxide-forming] 3 and trimethylamine monooxygenase, is a flavoprotein enzyme (EC 1.14.13.148) that in humans is encoded by the FMO3 gene. This enzyme catalyzes the following chemical reaction, among others:

In enzymology, a 2,5-dihydroxypyridine 5,6-dioxygenase (EC 1.13.11.9) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Maleate isomerase</span>

In enzymology, a maleate isomerase, or maleate cis-tran isomerase, is a member of the Asp/Glu racemase superfamily discovered in bacteria. It is responsible for catalyzing cis-trans isomerization of the C2-C3 double bond in maleate to produce fumarate, which is a critical intermediate in citric acid cycle. The presence of an exogenous mercaptan is required for catalysis to happen.

In enzymology, a methylitaconate Δ-isomerase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Cobalt chelatase</span> Enzyme

Cobalt chelatase (EC 6.6.1.2) is an enzyme that catalyzes the chemical reaction

In enzymology, a formylaspartate deformylase (EC 3.5.1.8) is an enzyme that catalyzes the chemical reaction

In enzymology, a formyltetrahydrofolate deformylase (EC 3.5.1.10) is an enzyme that catalyzes the chemical reaction

In enzymology, a N-formylglutamate deformylase (EC 3.5.1.68) is an enzyme that catalyzes the chemical reaction

In enzymology, a N-substituted formamide deformylase (EC 3.5.1.91) is an enzyme that catalyzes the chemical reaction

In enzymology, a nicotinate glucosyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Acetamiprid</span> Chemical compound

Acetamiprid is an organic compound with the chemical formula C10H11ClN4. It is an odorless neonicotinoid insecticide produced under the trade names Assail, and Chipco by Aventis CropSciences. It is systemic and intended to control sucking insects (Thysanoptera, Hemiptera, mainly aphids) on crops such as leafy vegetables, citrus fruits, pome fruits, grapes, cotton, cole crops, and ornamental plants. It is also a key pesticide in commercial cherry farming due to its effectiveness against the larvae of the cherry fruit fly.

<span class="mw-page-title-main">2,6-Dihydroxypyridine</span> Chemical compound

2,6-Dihydroxypyridine is an alkaloid with the molecular formula C5H3N(OH)2. It is a colorless solid. 2,6-Dihyroxypyridine is an intermediate in the degradation of nicotine.

6-Hydroxynicotinate 3-monooxygenase (EC 1.14.13.114, NicC, 6HNA monooxygenase, HNA-3-monooxygenase) is an enzyme with systematic name 6-hydroxynicotinate,NADH:oxygen oxidoreductase (3-hydroxylating, decarboxylating). This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Nicotinate dehydrogenase (cytochrome)</span>

Nicotinate dehydrogenase (cytochrome) (EC 1.17.2.1, nicotinic acid hydroxylase, nicotinate hydroxylase) is an enzyme with systematic name nicotinate:cytochrome 6-oxidoreductase (hydroxylating). This enzyme catalyses the following chemical reaction

Maleamate amidohydrolase (EC 3.5.1.107, NicF) is an enzyme with systematic name maleamate amidohydrolase. This enzyme catalyses the following chemical reaction

References

  1. Jiménez JI, Canales A, Jiménez-Barbero J, Ginalski K, Rychlewski L, García JL, Díaz E (August 2008). "Deciphering the genetic determinants for aerobic nicotinic acid degradation: the nic cluster from Pseudomonas putida KT2440". Proceedings of the National Academy of Sciences of the United States of America. 105 (32): 11329–34. Bibcode:2008PNAS..10511329J. doi: 10.1073/pnas.0802273105 . PMC   2516282 . PMID   18678916.