NDUFAF2

Last updated
NDUFAF2
Identifiers
Aliases NDUFAF2 , B17.2L, MMTN, NDUFA12L, mimitin, NADH:ubiquinone oxidoreductase complex assembly factor 2, MC1DN10
External IDs OMIM: 609653 MGI: 1922847 HomoloGene: 18372 GeneCards: NDUFAF2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_174889

NM_001127346
NM_001360140

RefSeq (protein)

NP_777549

NP_001120818
NP_001347069

Location (UCSC) Chr 5: 60.95 – 61.15 Mb Chr 13: 108 – 108.16 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

NADH:ubiquinone oxidoreductase complex assembly factor 2 (NDUFAF2), also known as B17.2L or NDUFA12L is a protein that in humans is encoded by the NDUFAF2, or B17.2L, gene. [5] The NDUFAF2 protein is a chaperone involved in the assembly of NADH dehydrogenase (ubiquinone) also known as complex I, which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. [6] [7] Mutations in this gene have been associated with progressive encephalopathy and Leigh disease resulting from mitochondrial complex I deficiency. [5]

Contents

Structure

NDUFAF2 is located on the q arm of chromosome 5 in position 12.1. [5] The NDUFAF2 gene produces a 20 kDa protein composed of 169 amino acids. [8] [9] The protein is a chaperone of the complex I NDUFA12 subunit family. [10] [11]

Function

NADH:ubiquinone oxidoreductase (complex I) catalyzes the transfer of electrons from NADH to ubiquinone (coenzyme Q) in the first step of the mitochondrial respiratory chain, resulting in the translocation of protons across the inner mitochondrial membrane. The NDUFAF2 gene encodes a complex I assembly factor, B17.2L, that is important for the correct function of the mitochondrial respiratory chain. [5] Specifically, B17.2L acts as a molecular chaperone, associating with an 830 kDa subassembly in the late stages of complex I assembly. [7]

Clinical significance

Mutations in NDUFAF2 have been associated with complex I deficiency and mitochondrial diseases. These disorders are a result of the dysfunction of the mitochondrial respiratory chain and can cause a wide range of clinical manifestations from lethal neonatal disease to adult-onset neurodegenerative disorders. Phenotypes include macrocephaly with progressive leukodystrophy, non-specific encephalopathy, cardiomyopathy, myopathy, liver disease, Leigh syndrome, Leber hereditary optic neuropathy, and some forms of Parkinson disease. [10] [11] Clinically, NDUFAF2 mutations have been associated with progressive encephalopathy [7] and Leigh disease. [12] [13]

Interactions

In addition to co-complexes, NDUFAF2 has protein-protein interactions with CYB5B SEC22B, TMEM97, TMEM201, SPG21, LPAR3, STX8, OPTN. [14]

Related Research Articles

MT-ND5 A mitochondrial gene coding for a protein involved in the respiratory chain

MT-ND5 is a gene of the mitochondrial genome coding for the NADH-ubiquinone oxidoreductase chain 5 protein (ND5). The ND5 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Variations in human MT-ND5 are associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) as well as some symptoms of Leigh's syndrome and Leber's hereditary optic neuropathy (LHON).

NDUFS4

NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial (NDUFS4) also known as NADH-ubiquinone oxidoreductase 18 kDa subunit is an enzyme that in humans is encoded by the NDUFS4 gene. This gene encodes an nuclear-encoded accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase. Complex I removes electrons from NADH and passes them to the electron acceptor ubiquinone. Mutations in this gene can cause mitochondrial complex I deficiencies such as Leigh syndrome.

NDUFV1

NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial (NDUFV1) is an enzyme that in humans is encoded by the NDUFV1 gene. The NDUFV1 gene encodes the 51-kD subunit of complex I of the mitochondrial respiratory chain. Defects in complex I are a common cause of mitochondrial dysfunction. Mitochondrial complex I deficiency is linked to myopathies, encephalomyopathies, and neurodegenerative disorders such as Parkinson's disease and Leigh syndrome.

NDUFS8

NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial also known as NADH-ubiquinone oxidoreductase 23 kDa subunit, Complex I-23kD (CI-23kD), or TYKY subunit is an enzyme that in humans is encoded by the NDUFS8 gene. The NDUFS8 protein is a subunit of NADH dehydrogenase (ubiquinone) also known as Complex I, which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Mutations in this gene have been associated with Leigh syndrome.

NDUFS2

NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial (NDUFS2) also known as NADH-ubiquinone oxidoreductase 49 kDa subunit is an enzyme that in humans is encoded by the NDUFS2 gene. The protein encoded by this gene is a core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase. Mutations in this gene are associated with mitochondrial complex I deficiency.

NADH dehydrogenase (ubiquinone), alpha 1

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1 is a protein that in humans is encoded by the NDUFA1 gene. The NDUFA1 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Mutations in the NDUFA1 gene are associated with mitochondrial Complex I deficiency.

NDUFS1 Protein-coding gene in the species Homo sapiens

NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial (NDUFS1) is an enzyme that in humans is encoded by the NDUFS1 gene. The encoded protein, NDUFS1, is the largest subunit of complex I, located on the inner mitochondrial membrane, and is important for mitochondrial oxidative phosphorylation. Mutations in this gene are associated with complex I deficiency.

NDUFV2

NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial (NDUFV2) is an enzyme that in humans is encoded by the NDUFV2 gene. The encoded protein, NDUFV2, is a subunit of complex I of the mitochondrial respiratory chain, which is located on the inner mitochondrial membrane and involved in oxidative phosphorylation. Mutations in this gene are implicated in Parkinson's disease, bipolar disorder, schizophrenia, and have been found in one case of early onset hypertrophic cardiomyopathy and encephalopathy.

NDUFS7

NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial, also knowns as NADH-ubiquinone oxidoreductase 20 kDa subunit, Complex I-20kD (CI-20kD), or PSST subunit is an enzyme that in humans is encoded by the NDUFS7 gene. The NDUFS7 protein is a subunit of NADH dehydrogenase (ubiquinone) also known as Complex I, which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain.

NDUFA2

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2 is a protein that in humans is encoded by the NDUFA2 gene. The NDUFA2 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Mutations in the NDUFA2 gene are associated with Leigh's syndrome.

FOXRED1

FAD-dependent oxidoreductase domain-containing protein 1 (FOXRED1), also known as H17, or FP634 is an enzyme that in humans is encoded by the FOXRED1 gene. FOXRED1 is an oxidoreductase and complex I-specific molecular chaperone involved in the assembly and stabilization of NADH dehydrogenase (ubiquinone) also known as complex I, which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Mutations in FOXRED1 have been associated with Leigh syndrome and infantile-onset mitochondrial encephalopathy.

NDUFA8

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8 is an enzyme that in humans is encoded by the NDUFA8 gene. The NDUFA8 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain.

NDUFAF1

Complex I intermediate-associated protein 30, mitochondrial (CIA30), or NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 1 (NDUFAF1), is a protein that in humans is encoded by the NDUFAF1 or CIA30 gene. The NDUFAF1 gene encodes a human homolog of a Neurospora crassa protein involved in the assembly of complex I. The NDUFAF1 protein is an assembly factor of NADH dehydrogenase (ubiquinone) also known as complex I, which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Variants of the NDUFAF1 gene are associated with hypertrophic cardiomyopathy, leukodystrophy, and cardioencephalomyopathy.

NDUFAF3

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 3, also known as 2P1, E3-3, or C3orf60, is a protein that in humans is encoded by the NDUFAF3 gene. NDUFAF3 is a mitochondrial assembly protein involved in the assembly of NADH dehydrogenase (ubiquinone) also known as complex I, which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Mutations in this gene have been associated severe complex I deficiency and Leigh syndrome.

NDUFA10

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10 is an enzyme that in humans is encoded by the NDUFA10 gene. The NDUFA10 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Mutations in subunits of NADH dehydrogenase (ubiquinone), also known as Complex I, frequently lead to complex neurodegenerative diseases such as Leigh's syndrome. Furthermore, reduced NDUFA10 expression levels due to FOXM1-directed hypermethylation are associated with human squamous cell carcinoma and may be related to other forms of cancer.

NDUFB11

NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 11, mitochondrial is an enzyme that in humans is encoded by the NDUFB11 gene. NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit 11 is an accessory subunit of the NADH dehydrogenase (ubiquinone) complex, located in the mitochondrial inner membrane. It is also known as Complex I and is the largest of the five complexes of the electron transport chain. NDUFB11 mutations have been associated with linear skin defects with multiple congenital anomalies 3 and mitochondrial complex I deficiency.

NDUFA11

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11 is an enzyme that in humans is encoded by the NDUFA11 gene. The NDUFA11 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain Mutations in subunits of NADH dehydrogenase (ubiquinone), also known as Complex I, frequently lead to complex neurodegenerative diseases such as Leigh's syndrome. Mutations in this gene are associated with severe mitochondrial complex I deficiency.

NDUFAF4

NADH:ubiquinone oxidoreductase complex assembly factor 4, (NDUFAF4) also known as Hormone-regulated proliferation-associated protein of 20 kDa, (HRPAP20) or C6orf66 is a protein that in humans is encoded by the NDUFAF4 gene. NDUFAF4 is a mitochondrial assembly protein involved in the assembly of NADH dehydrogenase (ubiquinone) also known as complex I, which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Mutations in this gene have been associated with complex I deficiency and infantile mitochondrial encephalomyopathy. Elevations in HRPAP20 have also been implicated in breast cancer.

NDUFAF6

NADH:ubiquinone oxidoreductase complex assembly factor 6 is a protein that in humans is encoded by the NDUFAF6 gene. The protein is involved in the assembly of complex I in the mitochondrial electron transport chain. Mutations in the NDUFAF6 gene have been shown to cause Complex I deficiency, Leigh syndrome, and Acadian variant Fanconi Syndrome.

NADH:ubiquinone oxidoreductase complex assembly factor 5, also known as Arginine-hydroxylase NDUFAF5, or Putative methyltransferase NDUFAF5, is a protein that in humans is encoded by the NDUFAF5 gene. The NADH-ubiquinone oxidoreductase complex of the mitochondrial respiratory chain catalyzes the transfer of electrons from NADH to ubiquinone, and consists of at least 43 subunits. The complex is located in the inner mitochondrial membrane. This gene encodes a mitochondrial protein that is associated with the matrix face of the mitochondrial inner membrane and is required for complex I assembly. A mutation in this gene results in mitochondrial complex I deficiency. Multiple transcript variants encoding different isoforms have been found for this gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000164182 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000068184 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 4 "Entrez Gene: NADH:ubiquinone oxidoreductase complex assembly factor 2" . Retrieved 2018-07-23.
  6. Donald Voet; Judith G. Voet; Charlotte W. Pratt (2013). "18". Fundamentals of biochemistry : life at the molecular level (4th ed.). Hoboken, NJ: Wiley. pp. 581–620. ISBN   9780470547847.
  7. 1 2 3 Ogilvie, Isla; Kennaway, Nancy G.; Shoubridge, Eric A. (October 2005). "A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy". The Journal of Clinical Investigation. 115 (10): 2784–2792. doi:10.1172/JCI26020. ISSN   0021-9738. PMC   1236688 . PMID   16200211.
  8. Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P (October 2013). "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research. 113 (9): 1043–53. doi:10.1161/CIRCRESAHA.113.301151. PMC   4076475 . PMID   23965338.
  9. Yao, Daniel. "Cardiac Organellar Protein Atlas Knowledgebase (COPaKB) —— Protein Information". amino.heartproteome.org. Retrieved 2018-07-23.
  10. 1 2 "NDUFAF2 - NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 2 precursor - Homo sapiens (Human) - NDUFAF2 gene & protein". www.uniprot.org. Retrieved 2018-07-23.
  11. 1 2 "UniProt: the universal protein knowledgebase". Nucleic Acids Research. 45 (D1): D158–D169. 2016-11-29. doi:10.1093/nar/gkw1099. ISSN   0305-1048. PMC   5210571 . PMID   27899622.
  12. Herzer, M.; Koch, J.; Prokisch, H.; Rodenburg, R.; Rauscher, C.; Radauer, W.; Forstner, R.; Pilz, P.; Rolinski, B. (February 2010). "Leigh disease with brainstem involvement in complex I deficiency due to assembly factor NDUFAF2 defect" (PDF). Neuropediatrics. 41 (1): 30–34. doi:10.1055/s-0030-1255062. hdl: 2066/87232 . ISSN   1439-1899. PMID   20571988.
  13. Hoefs, Saskia J. G.; Dieteren, Cindy E. J.; Rodenburg, Richard J.; Naess, Karin; Bruhn, Helene; Wibom, Rolf; Wagena, Esther; Willems, Peter H.; Smeitink, Jan A. M. (July 2009). "Baculovirus complementation restores a novel NDUFAF2 mutation causing complex I deficiency". Human Mutation. 30 (7): E728–736. doi: 10.1002/humu.21037 . ISSN   1098-1004. PMID   19384974. S2CID   32746835.
  14. IntAct. "21 Binary interactions for NDUFAF2". IntAct. Retrieved 2018-07-23.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.