Nemoria arizonaria

Last updated

Nemoria arizonaria
Nemoria arizonaria 113154208.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Lepidoptera
Family: Geometridae
Genus: Nemoria
Species:
N. arizonaria
Binomial name
Nemoria arizonaria
Grote, 1883

Nemoria arizonaria is a species of moth belonging to the family Geometridae. It was first described (and classified as Aplodes arizonaria) by Augustus Radcliffe Grote in 1883. [1] It is indigenous to Arizona, New Mexico and the Davis Mountains in Texas. [2]

Contents

History

The family Geometridae contains over 21,000 species and can be found all across the globe. [3] The Geometrinae subfamily contains 2350 species. Many of these species can be identified by the similar emerald green coloration observed in N. arizonaria, which led to the creation of the common name emerald moth. Comparative analysis of Nemoria’s biogeographic history suggests that the genus originated in South America. [3] Such a close proximity to the United States’ southwest region can explain the present day localization to this area. It has been suggested that Nemoria was introduced many times - the genus is the largest of the New World Geometrinae and is estimated to be around 7.5 million years old. Nemoria is most commonly known for the phenotypic plasticity of its larvae stages in many species. There are now 15 recognized species of Nemoria. [3]

Habitat and distribution

Nemoria arizonaria is typically restricted to canyon habitats of elevations around 4,000 to 8,000 feet. Within the United States, N. arizonaria seems to originate from Arizona, New Mexico, Mexico, Southern California and the Davis Mountains of Texas, although the summer (aemularia) form has only been found in Arizona. [4] The moth can commonly be found resting on windows and screens throughout the Southwest United States. [5]

Seasonal forms

The species has two seasonal forms: the summer form and winter/spring form. The summer form can be identified by its white costa. Until recently, this form was thought to have been a separate species from N.arizonaria and was given the name Nemoria aemularia. [4] In 1988, Noel McFarland discovered that N. aemularia adults could be reared from N. arizonaria eggs – proving that N.arizonaria and N. aemularia were actually the same moth, but due to seasonal dimorphism could result in substantially different phenotypic forms [4] [6]

Seasonal dimorphism is one type of polyphenism observed in the species, the other of which occurs at the larvae stage. [4]

Life stages

Larvae born in the spring feed on oak catkin (flower) and resemble catkins in appearance [7] , while those that feed on oak leaves express a different phenotype, specifically one that resembles a twig. [8] In fact, diet alone regulates the expressed phenotype. [5] [8] The larvae enter the pupa stage after a few weeks and soon develop into adults. The adult dies shortly after mating and laying egg. [8]

Feeding

As discussed above, larvae feed either on catkins or oak leaves and twigs depending upon the season. [4] [9] Adults, on the other hand, feed on nectar. Studies on Lepidoptera have found that feeding behavior is in fact triggered by sugar-receptor communication with chemosensilla, and that both starch and sucrose compete for taste receptor sites along the sensilla. When starch and sucrose were artificially added to bind to sensilla receptor sites, Lepodoptera stopped food-sucking behavior all together. Even though they were still hungry, their artificially occupied receptor sites signaled otherwise. [10]

Adult

N. arizonaria is emerald colored, possessing a wide post-medial line - one of the broadest amongst all North American Nemoria species. [4] [5] The species also has a thin, yellow colored terminal line on the wing, with a slight red color between veins. [4] A white fringe outlines its one- inch wingspan. [5] A distinguishing feature between the two seasonal forms is the presence of purple-red markings on the costa of the forewing in the summer form. In this form, the abdomen contains reddish brown markings on the first few segments on the males, while female abdomens have pale red markings. [4] Male and certain females also possess small white spots on the abdomen. [4]

Larvae

The timing of birth affects the phenotype of these caterpillars: N. arizonaria born in the spring feed on oak catkins and thus develop a cuticle that resembles catkin flower. Those that are born in the summer must eat oak leaves since catkins are no longer abundant at this time of year. These larvae develop to mimic oak twigs instead, acquiring a smooth grey-green appearance. [9] Because catkins contain more nutrition than leaves and twigs, larvae that feed on catkins are larger before they pupate. [5] [9] Those that feed on catkins appear golden with many small projections, a fuzzy coating, and brown dots along its back that mimic catkin stamens. [9] [11] Since these larvae feed on pollen, their heads and mandibles are smaller than those that feed on leaves and twigs, possibly because large mandibles are not necessary for catkin consumption3. Subsequent rearing experiments have shown that only larval diet influence the developmental trigger. [8] [9]

Although genotypically similar, these eggs, upon hatching, begin feeding on oak leaves rather than the out of season catkins and develop jaws to accommodate feeding. [8] [9] It has been found that behavioral changes of larval mandibles occur in both H. buttivitta and H. subrotata depending upon usage, however research has not yet proven that this occurs in N. arizonaria. [12]

Genetic buffering

Genetic buffering seems to explain the complexities between genotypic and phenotypic expression by concealing genetic and environmental variations on observed phenotype – allowing for a myriad number of phenotypes for a single genotype. Rutherford explains how different larvae phenotypes of N. arizonaria were possibly developed by attributing the stages and thresholds of genetic variation storage in populations. Under normal situations, genetic buffering is intact, and all individuals with a genotype reflect identical phenotypes. However, when buffering breaks down, the expression of previously silent genes emerge and are allowed to cross, resulting in phenotypic variation from the original form. These phenotypic differences are then subject to selection. Genetic buffering allows for maintaining a certain phenotype while also allowing for the possibility of change. [13]

Phenotypic plasticity

In a similar vein, phenotypic plasticity allows for phenotypical variation across populations depending upon density, environmental triggers, and the species involved. Phenotypical variation can include both visual and behavioral aspects. Though some responses are reversible, including certain behaviors, in N. arizonaria, once a phenotype is expressed it is unchangeable. [8] [14] Because the fluidity resulting from phenotypic plasticity allows for a species to circumvent predator attack, phenotypic plasticity has influenced natural selection to favor such measures. [14] Although larvae have been observed to be highly plastic, this plasticity is not observed in adults. [3]

Because it is thought that phenotypic plasticity has evolved independently multiple times, Nemoria species exhibiting phenotypic plasticity have been placed in several different clades to reflect this evolution. Similarly, Nemoria species that have demonstrated plasticity in adult stages have also been regrouped. [3]

Both genetic buffering and phenotypic plasticity have been able to explain the various phenotypes observed in N. arizonaria. Much research has been done on understanding the triggers involved in phenotypic expression. After examining whether the color of light, in addition to diet, may influence phenotypic expression of N. arizonaria, Greene concluded that diet alone influenced morph induction even though light has been proven to affect the phenotype of many other polymorphic larvae. [8] Because the larvae’s diet allows it to mimic seasonal changes in sync with its residing tree, Greene concludes that this phenotypic variance has been selected for since caterpillars who do undergo these changes are better concealed from predatory birds. [5] [8] Dr. Greene has also discovered that tannin found within oak leaves help facilitate this change of phenotype through experiments where N. arizonaria were fed artificial diets consisting of tannin. [5] [9] [11] In many Lepidoptera species, temperature regulation has a significant impact on the resulting larvae. [15] For example, when Danaus plexippus , was reared in cold environments, more black pigments were observed than when it was reared in warm temperatures. Since coloration affects the absorption of radiant energy, color variation induced by temperature may serve as a form of ectothermic adaption. [15] Despite the varying temperatures observed in ‘’N. arizonaria’’’s habitat, no such temperature dependence of larvae have been observed. [9] [15]

Although phenotypic plasticity has been an increasingly popular area of study, Nemoria arizonaria is the first known case in which the species’ diet, rather than light or temperature, influences its phenotypic appearance. [9] [11] [5] To fully interpret the impact the environment has on a species’ phenotype and development when studying developmental processes, a more thorough understanding of ecology is necessary. By synergizing both ecology and evolutionary processes, as seen through N. arizonaria studies, a better understanding of how organisms evolve and develop can be reached. [16] Scientific Classification [17]

Related Research Articles

<span class="mw-page-title-main">Metamorphosis</span> Profound change in body structure during the postembryonic development of an organism

Metamorphosis is a biological process by which an animal physically develops including birth transformation or hatching, involving a conspicuous and relatively abrupt change in the animal's body structure through cell growth and differentiation. Some insects, fish, amphibians, mollusks, crustaceans, cnidarians, echinoderms, and tunicates undergo metamorphosis, which is often accompanied by a change of nutrition source or behavior. Animals can be divided into species that undergo complete metamorphosis ("holometaboly"), incomplete metamorphosis ("hemimetaboly"), or no metamorphosis ("ametaboly").

<span class="mw-page-title-main">Caterpillar</span> Larva of a butterfly or moth

Caterpillars are the larval stage of members of the order Lepidoptera.

A maternal effect is a situation where the phenotype of an organism is determined not only by the environment it experiences and its genotype, but also by the environment and genotype of its mother. In genetics, maternal effects occur when an organism shows the phenotype expected from the genotype of the mother, irrespective of its own genotype, often due to the mother supplying messenger RNA or proteins to the egg. Maternal effects can also be caused by the maternal environment independent of genotype, sometimes controlling the size, sex, or behaviour of the offspring. These adaptive maternal effects lead to phenotypes of offspring that increase their fitness. Further, it introduces the concept of phenotypic plasticity, an important evolutionary concept. It has been proposed that maternal effects are important for the evolution of adaptive responses to environmental heterogeneity.

<i>Pieris rapae</i> Species of butterfly

Pieris rapae is a small- to medium-sized butterfly species of the whites-and-yellows family Pieridae. It is known in Europe as the small white, in North America as the cabbage white or cabbage butterfly, on several continents as the small cabbage white, and in New Zealand as the white butterfly. The butterfly is recognizable by its white color with small black dots on its wings, and it can be distinguished from P. brassicae by its larger size and the black band at the tip of its forewings.

<i>Manduca sexta</i> Species of moth

Manduca sexta is a moth of the family Sphingidae present through much of the Americas. The species was first described by Carl Linnaeus in his 1763 Centuria Insectorum.

<span class="mw-page-title-main">Forest tent caterpillar moth</span> Species of insect

The forest tent caterpillar moth is a moth found throughout North America, especially in the eastern regions. Unlike related tent caterpillar species, the larvae of forest tent caterpillars do not make tents, but rather, weave a silky sheet where they lie together during molting. They also lay down strands of silk as they move over branches and travel as groups along these pheromone-containing silk trails. The caterpillars are social, traveling together to feed and massing as a group at rest. Group behavior diminishes as the caterpillars increase in size, so that by the fifth instar (molt) the caterpillars are feeding and resting independently.

<span class="mw-page-title-main">Polyphenism</span> Type of polymorphism where different forms of an animal arise from a single genotype

A polyphenic trait is a trait for which multiple, discrete phenotypes can arise from a single genotype as a result of differing environmental conditions. It is therefore a special case of phenotypic plasticity.

<span class="mw-page-title-main">Phenotypic plasticity</span> Trait change of an organism in response to environmental variation

Phenotypic plasticity refers to some of the changes in an organism's behavior, morphology and physiology in response to a unique environment. Fundamental to the way in which organisms cope with environmental variation, phenotypic plasticity encompasses all types of environmentally induced changes that may or may not be permanent throughout an individual's lifespan.

<span class="mw-page-title-main">Buck moth</span> Species of moth

The buck moth is a common insect found in oak forests, stretching in the United States from peninsular Florida to New England, and as far west as Texas and Kansas. It was first described by Dru Drury in 1773. The larvae typically emerge in a single generation in the spring. The larvae are covered in hollow spines that are attached to a poison sac. The poison can cause symptoms ranging from stinging, itching and burning sensations to nausea. Subspecies Hemileuca maia maia is listed as endangered in the US state of Connecticut.

<span class="mw-page-title-main">Garden tiger moth</span> Species of moth

The garden tiger moth or great tiger moth is a moth of the family Erebidae. Arctia caja is a northern species found in the US, Canada, and Europe. The moth prefers cold climates with temperate seasonality, as the larvae overwinter, and preferentially chooses host plants that produce pyrrolizidine alkaloids. However, garden tiger moths are generalists, and will pick many different plants to use as larval host plants.

<span class="mw-page-title-main">Mediterranean flour moth</span> Species of moth

The Mediterranean flour moth or mill moth is a moth of the family Pyralidae. It is a common pest of cereal grains, especially flour. This moth is found throughout the world, especially in countries with temperate climates. It prefers warm temperatures for more rapid development, but it can survive a wide range of temperatures.

<i>Scathophaga stercoraria</i> Species of fly

Scathophaga stercoraria, commonly known as the yellow dung fly or the golden dung fly, is one of the most familiar and abundant flies in many parts of the Northern Hemisphere. As its common name suggests, it is often found on the feces of large mammals, such as horses, cattle, sheep, deer, and wild boar, where it goes to breed. The distribution of S. stercoraria is likely influenced by human agriculture, especially in northern Europe and North America. The Scathophaga are integral in the animal kingdom due to their role in the natural decomposition of dung in fields. They are also very important in the scientific world due to their short life cycles and susceptibility to experimental manipulations; thus, they have contributed significant knowledge about animal behavior.

<i>Biston strataria</i> Species of moth

Biston strataria, the oak beauty, is a moth of the family Geometridae. It is native to Europe, the Balkan countries and the Black Sea region as far as Asia Minor and the Caucasus. The species was first described by Johann Siegfried Hufnagel in 1767. B. strataria is found in a variety of habitats, but is mostly found in woodlands where it rests on the bark of trees, camouflaged by its mottled black and grey wings. The male has feather-like antennae while those of the female are more thread-like. The moth has a wingspan of 40 to 56 mm.

<i>Arctia plantaginis</i> Species of moth

Arctia plantaginis, the wood tiger, is a moth of the family Erebidae. Several subspecies are found in the Holarctic ecozone south to Anatolia, Transcaucasus, northern Iran, Kazakhstan, Mongolia, China, Korea and Japan. One subspecies is endemic to North America.

<i>Eriogaster lanestris</i> Species of moth

Eriogaster lanestris, commonly known as the small eggar, is a moth of the family Lasiocampidae that is found across the Palearctic. Unlike many other members of the Lasiocampidae, the small eggar is a social insect. Historically, only eusocial insects like ants, bees, and termites were thought to exhibit complex social organization and communication systems. However, research since the late 20th century has found that E. lanestris, among a number of other phylogenetically related moth and butterfly species, demonstrates social behaviors as well. Larvae spend nearly their entire development in colonies of about 200 individuals, and this grouped social structure offers a number of benefits, from thermoregulation to increased foraging success.

<i>Gynaephora groenlandica</i> Species of moth

Gynaephora groenlandica, the Arctic woolly bear moth, is an erebid moth native to the High Arctic in the Canadian archipelago, Greenland and Wrangel Island in Russia. It is known for its slow rate of development, as its full caterpillar life cycle may extend up to 7 years, with moulting occurring each spring. This species remains in a larval state for the vast majority of its life. Rare among Lepidoptera, it undergoes an annual period of diapause that lasts for much of the calendar year, as G. groenlandica is subject to some of the longest, most extreme winters on Earth. In this dormant state, it can withstand temperatures as low as −70 °C. The Arctic woolly bear moth also exhibits basking behavior, which aids in temperature regulation and digestion and affects both metabolism and oxygen consumption. Females generally do not fly, while males usually do.

<i>Bicyclus anynana</i> Species of butterfly

Bicyclus anynana is a small brown butterfly in the family Nymphalidae, the most globally diverse family of butterflies. It is primarily found in eastern Africa from southern Sudan to Eswatini. It is found mostly in woodland areas and flies close to the ground. Male wingspans are 35–40 mm and female wingspans are 45–49 mm.

Insects have a wide variety of predators, including birds, reptiles, amphibians, mammals, carnivorous plants, and other arthropods. The great majority (80–99.99%) of individuals born do not survive to reproductive age, with perhaps 50% of this mortality rate attributed to predation. In order to deal with this ongoing escapist battle, insects have evolved a wide range of defense mechanisms. The only restraint on these adaptations is that their cost, in terms of time and energy, does not exceed the benefit that they provide to the organism. The further that a feature tips the balance towards beneficial, the more likely that selection will act upon the trait, passing it down to further generations. The opposite also holds true; defenses that are too costly will have a little chance of being passed down. Examples of defenses that have withstood the test of time include hiding, escape by flight or running, and firmly holding ground to fight as well as producing chemicals and social structures that help prevent predation.

<i>Samea multiplicalis</i> Species of moth

Samea multiplicalis, the salvinia stem-borer moth, is an aquatic moth commonly found in freshwater habitats from the southern United States to Argentina, as well as in Australia where it was introduced in 1981. Salvinia stem-borer moths lay their eggs on water plants like Azolla caroliniana, Pistia stratiotes, and Salvinia rotundifolia. Larval feeding on host plants causes plant death, which makes S. multiplicalis a good candidate for biological control of weedy water plants like Salvinia molesta, an invasive water fern in Australia. However, high rates of parasitism in the moth compromise its ability to effectively control water weeds. S. multiplicalis larvae are a pale yellow to green color, and adults develop tan coloration with darker patterning. The lifespan, from egg to the end of adulthood is typically three to four weeks. The species was first described by Achille Guenée in 1854.

<i>Hemileuca lucina</i> Species of moth

Hemileuca lucina, the New England buck moth, is a species of moth in the family Saturniidae. This moth species is only found in the New England region of the United States. Larvae in early stages mainly feed on broadleaf meadowsweet whereas larvae in later stages show variation in food sources such as blackberry and black cherry leaves. Larvae have a black body with orange/black spines on their back that are used to deter predators. Pupation occurs during the summer and adult moths come out around September.

References

  1. Grote, A. R. (July 1883). "New Species and Notes on Structure of Moths and Genera". Canadian Entomologist . XV (7): 121–133. doi:10.4039/Ent15121-7.
  2. Ferguson, Douglas C. (May 25, 1985). The Moths of America North of Mexico. Fascicle 18.1. Geometroidea, Geometridae (Part), Geometrinae. Wedge Entomological Research Foundation. p. 27. ISBN   978-0-933003-00-2.
  3. 1 2 3 4 5 Canfield, Greene, Chen, Pierce, M.J., E., C.S., N.E.; Greene, E; Moreau, CS; Chen, N; Pierce, NE (2008). "Exploring phenotypic plasticity and biogeography in emerald moths: A phylogeny of the genus Nemoria (Lepidoptera: Geometridae)". Molecular Phylogenetics and Evolution. 49 (2): 477–87. doi:10.1016/j.ympev.2008.07.003. PMID   18672077.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. 1 2 3 4 5 6 7 8 9 Gruber, John (2011). "Nemoria arizonaria". Friends' Central School Lepidoptera Research. Retrieved 2011-03-05.
  5. 1 2 3 4 5 6 7 8 "Diet determines color and shape of a caterpillar". The New York Times. Associated Press. 7 February 1989.
  6. McFarland, Noel (1988). Portraits of South Australian Geometrid Moths. Allen Press. ISBN   978-0-935868-32-6.
  7. Greene, Erick (1989-02-03). "A Diet-Induced Developmental Polymorphism in a Caterpillar". Science. 243 (4891): 643–646. doi:10.1126/science.243.4891.643. ISSN   0036-8075.
  8. 1 2 3 4 5 6 7 8 Greene, Erik (1996). "Bird Effect of light quality and larval diet on morph induction in the polymorphic caterpillar". Biological Journal of the Linnean Society. 58 (864): 277–285. doi: 10.1111/j.1095-8312.1996.tb01435.x .
  9. 1 2 3 4 5 6 7 8 9 Greene, Erik (1989). "A Diet-Induced Developmental Polymorphism in a Caterpillar". Science. 243 (4891): 643–646. CiteSeerX   10.1.1.462.1931 . doi:10.1126/science.243.4891.643. PMID   17834231. S2CID   23249256.
  10. Inoue, Asaoka, Seta, Imaeda, Ozaki, T.A., K., K., D., M.; Asaoka, Kiyoshi; Seta, Kazuaki; Imaeda, Daisuke; Ozaki, Mamiko (2009). "Sugar Receptor response of the food-canal taste sensilla in a nectar-feeding swallowtail butterfly, Papilo xuthus". Naturwissenschaften. 96 (3): 355–363. doi: 10.1007/s00114-008-0483-8 . PMID   19083195.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. 1 2 3 Bicknell, E. (2009). "You Are what you eat, literally". Qondio Global. Retrieved 2011-03-05.
  12. Dockter, Erik (1993). "Developmental changes and wear of larval mandibles in Heterocampa Guttivitta and H.Subrotata (Notodontidae)". Journal of the Lepidopterists' Society. 47: 32–48.
  13. Rutherford, L.P. (2000). "From genotype to Phenotype: buffering mechanisms and the storage of genetic information". BioEssays. 22 (12): 1095–1105. doi:10.1002/1521-1878(200012)22:12<1095::AID-BIES7>3.0.CO;2-A. PMID   11084625.
  14. 1 2 Fordyce, J.A. (2006). "Review: The evolutionary consequences of ecological interactions mediated through phenotypic plasticity". The Journal of Experimental Biology. 209 (Pt 12): 2377–83. doi: 10.1242/jeb.02271 . PMID   16731814.
  15. 1 2 3 SolenskyLarkin, M.J., E.; Larkin, Elizabeth (2003). "Temperature-induced variation in Larval coloration in Danaus plexippus (Lepidoptera:Nymphalidae)". Ann. Entomol. Soc. Am. 96 (3): 211–216. doi: 10.1603/0013-8746(2003)096[0211:TVILCI]2.0.CO;2 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. Pfenning, Ledon-Retting, D.W.; Ledon-Rettig, C. (2009). "Development: The flexible Organism". Science. 325 (5938): 268–269. doi:10.1126/science.1175598. S2CID   84893741.
  17. "Nemoria arizonaria". Encyclopedia of Life. 2011. Retrieved 2011-04-20.