Neste Renewable Diesel

Last updated

Neste MY Renewable Diesel (formerly NExBTL) is a vegetable oil refining fuel production process commercialized by the Finnish oil and refining company Neste. Whether as an admixture or in its pure form, Neste MY Renewable Diesel is able to supplement or partially replace diesel fuel without problems. Neste MY Renewable Diesel guarantees that every gallon sold meets ASTM D975 and EN 15940 specifications in compliance with OEM standards. [1]

Contents

Despite the former name BTL, the feedstock is vegetable oil and waste animal fats, not whole plants. However, fuel quality is equal to the synthetic Fischer-Tropsch BTL and GTL diesel fuels.

Process

Neste Renewable Diesel is produced in a patented vegetable oil refining process. Chemically, it entails direct catalytic hydrodeoxygenation (hydrogenolysis) of plant oils, which are triglycerides, into the corresponding alkanes and propane. The glycerol chain of the triglyceride is hydrogenated to the corresponding C3 alkane, propane — there is no glycerol sidestream. This process removes oxygen from the oil; the diesel is not an oxygenate like traditional transesterified FAME biodiesel. Catalytic isomerization into branched alkanes is then done to adjust the cloud point in order to meet winter operability requirements. As it is chemically identical to ideal conventional diesel, it requires no modification or special precautions for the engine. [2] [3]

Production

Two refineries in Porvoo, Finland were brought on stream in 2007 and 2009, each with a capacity of 0.2 million tons per year. [4] [5] Two larger refineries, with annual production of 0.8 million tons both, were brought on stream in Singapore and Rotterdam in 2010 and 2011, respectively. [6] [7]

Emissions

Neste has estimated that the use of NExBTL diesel cuts greenhouse gas emissions by 40 to 90 percent in comparison to fossil based diesel. [8]

Due to the chemistry of the process, the renewable diesel is pure alkane and contains no aromatics, oxygen (although oxygen would have promoted cleaner combustion [9] ) or sulfur. [3] [ dead link ]

Cloud point

The cloud point (or gel point) can be adjusted down to −40 °C (−40 °F) [10] during the manufacturing process, compared to petrodiesel's cloud point of −30 °C (−22 °F),[ failed verification ] which could improve the cloud point of diesel when blended. The cloud point is the temperature when the wax precipitates out of the fuel in the form of small wax crystals, making the fuel cloudy and more difficult to move within the fuel lines and systems of vehicles. The lower the cloud point of a particular fuel is, the more suitable it is in colder environments. [11]

Feedstocks

A mix of palm oil, rapeseed oil, and waste fat from the food industry can be used. Initially, palm oil was the principal (90%) feedstock, although its share was reduced to 53% by 2013 [8] and to less than 20% by 2017. [12]

However, the EU biofuels industry has increased its use of palm oil by 365% during the years 2006–2012, from 0.4 to 1.9 million tonnes per year, and the trend is increasing. [13] [14] Also note that categorising Palm Fatty Acid Distillate, PFAD, as waste is controversial since it can be used to make e.g. soap, candles and animal fodder. In the UK PFAD is classified as a bi-product [15] [16] [17] ). PFAD is also omitted from sustainability requirements regarding biodiversity and high carbon stock areas (HCV). [18] [19]

Palm oil may endanger the carbon neutrality of the fuel if forest is cleared and swamps drained to make way for palm plantations. In response to this concern, Neste has joined the Round Table on Sustainable Palm Oil (RSPO) to certify that the palm oil is produced in a carbon-neutral, environmentally responsible manner. Neste purchases most of its palm oil from IOI, [20] but requires a separate production chain for the RSPO-certified palm oil, in order not to create demand for rainforest destruction.[ citation needed ]

Deforestation would release carbon to the atmosphere, and reduce the overall carbon binding capacity of the land, thus it would be counterproductive with respect to the carbon balance. In 2007, Greenpeace protested the use of palm oil, concluding the potential for deforestation remains. According to Greenpeace, increasing the production of palm oil reduces the available land area, so indirectly generates demand for rainforest destruction, even if the palm oil itself is rainforest-certified. Greenpeace noted RSPO is voluntary organization and claimed government regulation in palm oil producing countries, such as Indonesia, cannot be relied on because of political corruption. Greenpeace also claimed palm oil diesel can actually produce three to 10 times more carbon dioxide emissions than petrodiesel because of the indirect effects of clearing of swamps, forest fires and indirect generation of demand for land area. [21] Greenpeace demands that Neste should use domestic feedstocks such as rapeseed oil or biogas, instead. However, rapeseed is a slower-growing, cold-climate source with lesser carbon-binding potential than the oil palm, making emissions from cultivation and transport proportionally more severe.[ citation needed ]

In 2017, the share of palm oil in the feedstock has been reduced to less than 20%, [12] being replaced by reclaimed waste oils such as used frying oil, animal and fish fat, and camelina, jatropha, soy and rapeseed oil. Use of reclaimed waste oil reduces the greenhouse gas impact by 88–91%. [8] Neste is continuing to look into new feedstock, including algae, jatropha [22] and microbial oil. [23] [24] [ needs update ]

Use

This diesel is blended with petrodiesel. A market is created because the European Union required 5.75% of transport fuels should be biofuels by 2010. The EU further decided on 18 December 2008, that by 2020, the share of energy from renewable sources in all forms of transportation be at least 10% of the final consumption of energy. [25] Systems and regions without an electrical grid will be the long-term market for hydrotreated vegetable oils, as the EU prefers electrical use by factor 2.5. In the Helsinki area, the Helsinki Metropolitan Area Council and the Helsinki City Transport conducted a three-year experiment by running buses with 25% Neste Renewable Diesel at first, and then switching to 100% in 2008. [26] The trial, which was the largest field test of a biofuel produced from renewable raw materials worldwide, was a success: local emissions were decreased significantly, with particle emissions decreased by 30% and nitrogen oxide emissions by 10%, with excellent winter performance and no problems with catalytic converters. [27] Since then, Helsinki buses have run on Neste Renewable Diesel.[ citation needed ]

As a result of its hydrocarbon nature, Neste Renewable Diesel operates without problems in current diesel vehicles in all climatic conditions. It does not have any of the drawbacks of the traditional ester type FAME biodiesel, such as cold operability, 'best before' date, engine and fuel system deposit formation, risk for microbial growth and water pick up, engine oil dilution and deterioration.[ citation needed ]

Neste Renewable Diesel can be blended into diesel fuel in any ratio, whereas the use of the traditional FAME biodiesel is limited to maximum 7% by the EN 590 standard in order to avoid technical problems in engines and vehicles.[ citation needed ]

Following a proposal by VDA, Daimler Trucks and Daimler Buses recommend the biofuel Neste Renewable Diesel as an admixture to petrodiesel. [28]

See also

Related Research Articles

<span class="mw-page-title-main">Palm oil</span> Edible vegetable oil from fruit of oil palms

Palm oil is an edible vegetable oil derived from the mesocarp of the fruit of the oil palms. The oil is used in food manufacturing, in beauty products, and as biofuel. Palm oil accounted for about 36% of global oils produced from oil crops in 2014. Palm oils are easier to stabilize and maintain quality of flavor and consistency in ultra-processed foods, so are frequently favored by food manufacturers. On average globally, humans consumed 7.7 kg (17 lb) of palm oil per person in 2015. Demand has also increased for other uses, such as cosmetics and biofuels, creating more demand on the supply encouraging the growth of palm oil plantations in tropical countries.

<span class="mw-page-title-main">Biofuel</span> Type of biological fuel produced from biomass from which energy is derived

Biofuel is a fuel that is produced over a short time span from biomass, rather than by the very slow natural processes involved in the formation of fossil fuels, such as oil. Biofuel can be produced from plants or from agricultural, domestic or industrial biowaste. Biofuels are mostly used for transportation, but can also be used for heating and electricity. Biofuels are regarded as a renewable energy source. However, the use of biofuel has been controversial because of the several disadvantages associated with the use of it. These include for example : the "food vs fuel" debate, biofuel production methods being sustainable or not, leading to deforestation and loss of biodiversity or not.

<span class="mw-page-title-main">Biodiesel</span> Fuel made from vegetable oils or animal fats

Biodiesel is a renewable biofuel, a form of diesel fuel, derived from biological sources like vegetable oils, animal fats, or recycled greases, and consisting of long-chain fatty acid esters. It is typically made from fats.

Cetane number is an indicator of the combustion speed of diesel fuel and compression needed for ignition. It plays a similar role for diesel as octane rating does for gasoline. The CN is an important factor in determining the quality of diesel fuel, but not the only one; other measurements of diesel fuel's quality include energy content, density, lubricity, cold-flow properties and sulphur content.

<span class="mw-page-title-main">Bioenergy</span> Energy made from recently-living organisms

Bioenergy is energy made or generated from biomass, which consists of recently living organisms, mainly plants. Types of biomass commonly used for bioenergy include wood, food crops such as corn, energy crops and waste from forests, yards, or farms. The IPCC defines bioenergy as a renewable form of energy. Bioenergy can either mitigate or increase greenhouse gas emissions. There is also agreement that local environmental impacts can be problematic.

<span class="mw-page-title-main">Biomass to liquid</span>

Biomass to liquid is a multi-step process of producing synthetic hydrocarbon fuels made from biomass via a thermochemical route.

<span class="mw-page-title-main">Neste</span> Finnish oil company

Neste Oyj is an oil refining and marketing company located in Espoo, Finland. It produces, refines and markets oil products, provides engineering services, and licenses production technologies. Neste has operations in 14 countries.

<span class="mw-page-title-main">Biodiesel by region</span>

This article describes the use and availability of biodiesel in various countries around the world.

Biofuel is fuel that is produced from organic matter (biomass), including plant materials and animal waste. It is considered a renewable source of energy that can assist in reducing carbon emissions. The two main types of biofuel currently being produced in Australia are biodiesel and bioethanol, used as replacements for diesel and petrol (gasoline) respectively. As of 2017 Australia is a relatively small producer of biofuels, accounting for 0.2% of world bioethanol production and 0.1% of world biodiesel production.

<span class="mw-page-title-main">Vegetable oils as alternative energy</span> Fuel made from plants

Vegetable oils are increasingly used as a substitute for fossil fuels. Vegetable oils are the basis of biodiesel, which can be used like conventional diesel. Some vegetable oil blends are used in unmodified vehicles, but straight vegetable oil often needs specially prepared vehicles which have a method of heating the oil to reduce its viscosity and surface tension, sometimes specially made injector nozzles, increased injection pressure and stronger glow-plugs, in addition to fuel pre-heating is used. Another alternative is vegetable oil refining.

Second-generation biofuels, also known as advanced biofuels, are fuels that can be manufactured from various types of non-food biomass. Biomass in this context means plant materials and animal waste used especially as a source of fuel.

<span class="mw-page-title-main">Renewable energy in Finland</span> Overview of renewable energy in Finland

Renewable energy in Finland grew to 38.7% of total final energy consumption by year end 2014, achieving joint second position with Latvia in terms of renewable energy consumption by share amongst the EU-28 countries, behind its neighbour Sweden in first position on a 52.6% share. The 2014 share in Finland breaks down as renewable energy providing 52% of the heating and cooling sector, 31.4% of the electricity sector and 21.6% of the transport sector. By 2014, Finland had already exceeded its 2020 target for renewable energy use under the EU renewable energy directive as shown in the table of country targets.

Hydrotreated vegetable oil (HVO) is a biofuel made by the hydrocracking or hydrogenation of vegetable oil. Hydrocracking breaks big molecules into smaller ones using hydrogen while hydrogenation adds hydrogen to molecules. These methods can be used to create substitutes for gasoline, diesel, propane, kerosene and other chemical feedstock. Diesel fuel produced from these sources is known as green diesel or renewable diesel.

The biofuel sector in the United Kingdom, under the auspices of the government's Renewable Transport Fuel Obligation (RTFO), has been progressing towards enhanced sustainable energy solutions. Marking a significant stride in this direction was the government's endorsement and introduction of E10 biofuel in late 2021. This fuel blend, consisting of 90% regular unleaded gasoline and 10% ethanol, was introduced as part of an initiative to reduce greenhouse gas emissions (GHG) from transport fuels. The introduction of E10 led to a shift in the renewable fuel landscape in the UK, particularly influencing an increase in the utilization of non-waste feedstocks. In the year 2022, the biofuel sector, as per government reports, achieved a reduction in GHG emissions by 82% in comparison to traditional fossil fuels.

<span class="mw-page-title-main">Sustainable biofuel</span> Non-fossil-based sustainable production

Sustainable biofuel is biofuel produced in a sustainable manner. It is not based on petroleum or other fossil fuels. It includes not using plants that are used for food stuff to produce the fuel thus disrupting the world's food supply.

<span class="mw-page-title-main">Aviation biofuel</span> Sustainable fuel used to power aircraft

An aviation biofuel is a biofuel used to power aircraft and is said to be a sustainable aviation fuel (SAF). The International Air Transport Association (IATA) considers it a key element to reducing the carbon footprint within the environmental impact of aviation. Aviation biofuel could help decarbonize medium- and long-haul air travel generating most emissions, and could extend the life of older aircraft types by lowering their carbon footprint. The jargon synthetic paraffinic kerosene (SPK) refers to any non-petroleum-based fuel designed to replace kerosene jet fuel, which are often, but not always, made from biomass.

<span class="mw-page-title-main">Low-carbon fuel standard</span> Rule to reduce carbon intensity of transportation fuels

A low-carbon fuel standard (LCFS) is an emissions trading rule designed to reduce the average carbon intensity of transportation fuels in a given jurisdiction, as compared to conventional petroleum fuels, such as gasoline and diesel. The most common methods for reducing transportation carbon emissions are supplying electricity to electric vehicles, supplying hydrogen fuel to fuel cell vehicles and blending biofuels, such as ethanol, biodiesel, renewable diesel, and renewable natural gas into fossil fuels. The main purpose of a low-carbon fuel standard is to decrease carbon dioxide emissions associated with vehicles powered by various types of internal combustion engines while also considering the entire life cycle, in order to reduce the carbon footprint of transportation.

<span class="mw-page-title-main">Indirect land use change impacts of biofuels</span> Negative spillover effect of production of biofuels

The indirect land use change impacts of biofuels, also known as ILUC or iLUC, relates to the unintended consequence of releasing more carbon emissions due to land-use changes around the world induced by the expansion of croplands for ethanol or biodiesel production in response to the increased global demand for biofuels.

Palm oil, produced from the oil palm, is a basic source of income for many farmers in South East Asia, Central and West Africa, and Central America. It is locally used as cooking oil, exported for use in much commercial food and personal care products and is converted into biofuel. It produces up to 10 times more oil per unit area than soybeans, rapeseed or sunflowers.

<span class="mw-page-title-main">Bioliquids</span>

Bioliquids are liquid fuels made from biomass for energy purposes other than transport.

References

  1. "Product Information". Neste in North America. 2022-05-03. Retrieved 2023-08-01.
  2. "NExBTL Renewable Synthetic Diesel" (PDF). climatechange.ca.gov. Archived from the original (PDF) on 2010-04-18.
  3. 1 2 "Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel" (pdf). SAE International. Archived from the original on 2011-08-09. Retrieved 2010-05-10.
  4. "Neste Oil's second renewable diesel plant commissioned at Porvoo - Neste Oil Com". Archived from the original on 2013-02-25. Retrieved 2013-04-16.
  5. "Capacities of Neste Oil's refineries - Neste Oil Com". Archived from the original on 2013-05-14. Retrieved 2013-04-16.
  6. Neste Oil to build a NExBTL Renewable Diesel plant in Singapore - Neste Oil Com Archived 2013-06-19 at the Wayback Machine
  7. "Neste Oil starts up Europe's largest renewable diesel plant in Rotterdam". Archived from the original on 2013-06-20. Retrieved 2016-06-01.
  8. 1 2 3 "Flexible mix of raw materials". nesteoil.com. 2015-05-09. Archived from the original on 2013-08-19.
  9. Inal, Fikret; Senkan, Selim M. (2002). "Effects of oxygenate additives on polycyclic aromatic hydrocarbons(pahs) and soot formation". Combustion Science and Technology. 174 (9): 1–19. CiteSeerX   10.1.1.524.1105 . doi:10.1080/00102200290021353. S2CID   56015797.
  10. "Optimized usage of NExBTL renewable diesel fuel" (PDF). vtt.fi. 2011. Archived (PDF) from the original on 2014-08-19.
  11. "Frequently Asked Questions Heavy Duty - Diesel Fuel Filtration". Archived from the original on 2008-02-27. Retrieved 2007-12-01.
  12. 1 2 "Nesteen Lievonen: Polttoaineiden kysyntä kasvaa, vaikka autokanta sähköistyy". Ilta-Sanomat (in Finnish). 2017-10-04. Retrieved 2018-03-18. Aluksi uusiutuvaa dieseliä valmistettiin 95-prosenttisesti palmuöljystä, mutta nyt sen osuus on laskenut alle 20 prosenttiin.
  13. International Institute for Sustainable Development, September 2013. The EU Biofuel Policy and Palm Oil: Cutting subsidies or cutting rainforest? https://www.iisd.org/gsi/sites/default/files/bf_eupalmoil.pdf
  14. "The EU Biofuel Policy and Palm Oil: Cutting subsidies or cutting rainforest?" (PDF). iisd.org. Archived (PDF) from the original on 2018-01-29.
  15. "Facts on biofuels" (in Norwegian). Norwegian Environment Agency. Archived from the original on 2016-03-07. Retrieved 2016-03-03.
  16. ZERO & REgnskogfondet (Rainforest Foundation Norway) PFAD erroneously classified. 19. February 2016. (in Norwegian). http://blogg.zero.no/wp-content/uploads/2016/03/Brev-Miljødirektoratet-om-PFAD-fra-ZERO-og-Regnskogfondet.pdf Archived 2016-10-08 at the Wayback Machine
  17. "Palm Fatty Acid Distillate (PFAD) in biofuels" (PDF). ZERO and Rainforest Foundation. 2016-02-17.
  18. Norwegian Environment Agency: Facts on biofuels. (in Norwegian) 3. March 2016. http://www.miljodirektoratet.no/no/Nyheter/Nyheter/2016/Mars-2016/Fakta-om-biodrivstoff/ Archived 2016-03-07 at the Wayback Machine
  19. "The High Carbon Stock (HCS) approach: No deforestation in practice - Forests Asia". Forests Asia. Archived from the original on 2015-03-16. Retrieved 2018-03-18.
  20. "Neste Oil S'pore plant to buy palm oil from IOI Corp". Reuters UK. 2008-01-15. Archived from the original on 2017-12-29. Retrieved 2008-02-07.
  21. Greenpeace. "Kysymyksiä ja vastauksia palmuöljystä". greenpeace.org (in Finnish).[ dead link ]
  22. "New raw materials are researched". Nesteoil.com. Archived from the original on 2010-11-27. Retrieved 2010-05-10.
  23. "Waste-based microbial oil set to become a raw material for renewable diesel". nesteoil.com. 2010-09-21. Archived from the original on 2010-11-26.
  24. "Neste banks on waste-based microbial oil". biodieselmagazine.com. 2010-09-29. Archived from the original on 2017-12-28.
  25. "Promotion of the use of energy from renewable sources" (PDF). europa.eu. Archived from the original (PDF) on 2012-10-23.
  26. YTV. YTV and HKL lead the way Biofuel reduces bus transportation emissions. http://www.ytv.fi/ENG/transport/travelling_news/lo_2007_10_03_biofuel.htm Archived 2007-12-12 at the Wayback Machine
  27. "Biofuel reduces local emissions efficiently". Archived from the original on 2013-06-10. Retrieved 2013-06-10.
  28. "Next Stop: Fuso Aero Star Eco Hybrid". Archived from the original on 2008-12-04. Using biofuel admixtures in a higher dosage than the 7 percent currently used is now under discussion, and following a proposal by VDA, Daimler Trucks and Daimler Buses recommend the biofuel NExBTL as an admixture.