Neural scaling law

Last updated
Performance of AI models on various benchmarks from 1998 to 2024. Performance of AI models on various benchmarks from 1998 to 2024.png
Performance of AI models on various benchmarks from 1998 to 2024.

In machine learning, a neural scaling law is an empirical scaling law that describes how neural network performance changes as key factors are scaled up or down. These factors typically include the number of parameters, training dataset size, [1] [2] and training cost.

Contents

Introduction

In general, a deep learning model can be characterized by four parameters: model size, training dataset size, training cost, and the post-training error rate (e.g., the test set error rate). Each of these variables can be defined as a real number, usually written as (respectively: parameter count, dataset size, computing cost, and loss).

A neural scaling law is a theoretical or empirical statistical law between these parameters. There are also other parameters with other scaling laws.

Size of the model

In most cases, the model's size is simply the number of parameters. However, one complication arises with the use of sparse models, such as mixture-of-expert models. [3] With sparse models, during inference, only a fraction of their parameters are used. In comparison, most other kinds of neural networks, such as transformer models, always use all their parameters during inference.

Size of the training dataset

The size of the training dataset is usually quantified by the number of data points within it. Larger training datasets are typically preferred, as they provide a richer and more diverse source of information from which the model can learn. This can lead to improved generalization performance when the model is applied to new, unseen data. [4] However, increasing the size of the training dataset also increases the computational resources and time required for model training.

With the "pretrain, then finetune" method used for most large language models, there are two kinds of training dataset: the pretraining dataset and the finetuning dataset. Their sizes have different effects on model performance. Generally, the finetuning dataset is less than 1% the size of pretraining dataset. [5]

In some cases, a small amount of high quality data suffices for finetuning, and more data does not necessarily improve performance. [5]

Cost of training

Amortized hardware and energy cost to train frontier AI models over time. Amortized hardware and energy cost to train frontier AI models over time.png
Amortized hardware and energy cost to train frontier AI models over time.

Training cost is typically measured in terms of time (how long it takes to train the model) and computational resources (how much processing power and memory are required). It is important to note that the cost of training can be significantly reduced with efficient training algorithms, optimized software libraries, and parallel computing on specialized hardware such as GPUs or TPUs.

The cost of training a neural network model is a function of several factors, including model size, training dataset size, the training algorithm complexity, and the computational resources available. [4] In particular, doubling the training dataset size does not necessarily double the cost of training, because one may train the model for several times over the same dataset (each being an "epoch").

Performance

MMLU performance vs AI scale MMLU performance vs AI scale.png
MMLU performance vs AI scale
BIF-Bench (hard) performance vs AI scale. Big Bench Hard performance vs AI scale.png
BIF-Bench (hard) performance vs AI scale.

The performance of a neural network model is evaluated based on its ability to accurately predict the output given some input data. Common metrics for evaluating model performance include: [4]

Performance can be improved by using more data, larger models, different training algorithms, regularizing the model to prevent overfitting, and early stopping using a validation set.

Examples

(Hestness, Narang, et al, 2017)

The 2017 paper [2] is a common reference point for neural scaling laws fitted by statistical analysis on experimental data. Previous works before the 2000s, as cited in the paper, were either theoretical or orders of magnitude smaller in scale. Whereas previous works generally found the scaling exponent to scale like , with , the paper found that .

Of the factors they varied, only task can change the exponent . Changing the architecture optimizers, regularizers, and loss functions, would only change the proportionality factor, not the exponent. For example, for the same task, one architecture might have while another might have . They also found that for a given architecture, the number of parameters necessary to reach lowest levels of loss, given a fixed dataset size, grows like for another exponent .

They studied machine translation with LSTM (), generative language modelling with LSTM (), ImageNet classification with ResNet (), and speech recognition with two hybrid (LSTMs complemented by either CNNs or an attention decoder) architectures ().

(Henighan, Kaplan, et al, 2020)

A 2020 analysis [9] studied statistical relations between over a wide range of values and found similar scaling laws, over the range of , , and over multiple modalities (text, video, image, text to image, etc.). [9]

In particular, the scaling laws it found are (Table 1 of [9] ):

The scaling law of was confirmed during the training of GPT-3 (Figure 3.1 [10] ).

Chinchilla scaling (Hoffmann, et al, 2022)

Optimal ratio of training tokens to model parameters for Chinchilla scaling law. It shows that in general, "Chinchilla optimal" scaling is
D
=
20
N
{\displaystyle D=20N}
, and is significantly different from (Hoffmann et al, 2022). Data analysis by Epoch AI. Optimal ratio of training tokens to model parameters for Chinchilla scaling law.png
Optimal ratio of training tokens to model parameters for Chinchilla scaling law. It shows that in general, "Chinchilla optimal" scaling is , and is significantly different from (Hoffmann et al, 2022). Data analysis by Epoch AI.

One particular scaling law ("Chinchilla scaling") states that, for a large language model (LLM) autoregressively trained for one epoch, with a cosine learning rate schedule, we have: [12] where the variables are

and the statistical parameters are

Although Besiroglu et. al. [14] claims that the statistical estimation is slightly off, and should be .

The statistical laws were fitted over experimental data with .

Since there are 4 variables related by 2 equations, imposing 1 additional constraint and 1 additional optimization objective allows us to solve for all four variables. In particular, for any fixed , we can uniquely solve for all 4 variables that minimizes . This provides us with the optimal for any fixed :Plugging in the numerical values, we obtain the "Chinchilla efficient" model size and training dataset size, as well as the test loss achievable:Similarly, we may find the optimal training dataset size and training compute budget for any fixed model parameter size, and so on.

There are other estimates for "Chinchilla efficient" model size and training dataset size. The above is based on a statistical model of . One can also directly fit a statistical law for without going through the detour, for which one obtains:or as tabulated:

/ FLOP / FLOPs of training Gopher
400 million1.92e+191/299688.0 billion
1 billion1.21e+201/570620.2 billion
10 billion1.23e+221/2819205.1 billion
67 billion5.76e+2311.5 trillion
175 billion3.85e+246.73.7 trillion
280 billion9.90e+2417.25.9 trillion
520 billion3.43e+2559.511.0 trillion
1 trillion1.27e+26221.321.2 trillion
10 trillion1.30e+2822515.9216.2 trillion

Discrepancy

Chinchilla scaling law for training transformer language models suggests that when given an increased budget (in FLOPs), to achieve compute-optimal, the number of model parameters (N) and the number of tokens for training the model (D) should scale in approximately equal proportions. This conclusion differs from (Henighan, Kaplan, et al, 2020), which states that N should be scaled faster than D.

The source of this discrepancy is not fully clarified, but possibly due to hyperparameter tuning and learning rate schedules. [15] [16]

Beyond Chinchilla scaling

As Chinchilla scaling has been the reference point for many large-scaling training runs, there had been a concurrent effort to go "beyond Chinchilla scaling", meaning to modify some of the training pipeline in order to obtain the same loss with less effort, or deliberately train for longer than what is "Chinchilla optimal".

Usually, the goal is to make the scaling law exponent larger, which means the same loss can be trained for much less compute. For instance, filtering data can make the scaling law exponent larger. [17]

Another strand of research studies how to deal with limited data, as according to Chinchilla scaling laws, the training dataset size for the largest language models already approaches what is available on the internet. [18] found that augmenting the dataset with a mix of "denoising objectives" constructed from the dataset improves performance. [19] studies optimal scaling when all available data is already exhausted (such as in rare languages), so one must train multiple epoches over the same dataset (whereas Chinchilla scaling requires only one epoch). The Phi series of small language models were trained on textbook-like data generated by large language models, for which data is only limited by amount of compute available. [20]

Chinchilla optimality was defined as "optimal for training compute", whereas in actual production-quality models, there will be a lot of inference after training is complete. "Overtraining" during training means better performance during inference. [21] LLaMA models were overtrained for this reason. Subsequent studies discovered scaling laws in the overtraining regime, for dataset sizes up to 32x more than Chinchilla-optimal. [22]

Broken neural scaling laws (BNSL)

A 2022 analysis [23] found that many scaling behaviors of artificial neural networks follow a smoothly broken power law functional form:

in which refers to the quantity being scaled (i.e. , , , number of training steps, number of inference steps, or model input size) and refers to the downstream (or upstream) performance evaluation metric of interest (e.g. prediction error, cross entropy, calibration error, AUROC, BLEU score percentage, F1 score, reward, Elo rating, solve rate, or FID score) in zero-shot, prompted, or fine-tuned settings. The parameters are found by statistical fitting.

On a log–log plot, when is not too large and is subtracted out from the y-axis, this functional form looks like a series of linear segments connected by arcs; the transitions between the segments are called "breaks", hence the name broken neural scaling laws (BNSL).

The scenarios in which the scaling behaviors of artificial neural networks were found to follow this functional form include large-scale vision, language, audio, video, diffusion, generative modeling, multimodal learning, contrastive learning, AI alignment, AI capabilities, robotics, out-of-distribution (OOD) generalization, continual learning, transfer learning, uncertainty estimation / calibration, out-of-distribution detection, adversarial robustness, distillation, sparsity, retrieval, quantization, pruning, fairness, molecules, computer programming/coding, math word problems, arithmetic, emergent abilities, double descent, supervised learning, unsupervised/self-supervised learning, and reinforcement learning (single agent and multi-agent).

The architectures for which the scaling behaviors of artificial neural networks were found to follow this functional form include residual neural networks, transformers, MLPs, MLP-mixers, recurrent neural networks, convolutional neural networks, graph neural networks, U-nets, encoder-decoder (and encoder-only) (and decoder-only) models, ensembles (and non-ensembles), MoE (mixture of experts) (and non-MoE) models, and sparse pruned (and non-sparse unpruned) models.

Inference scaling

The Elo rating of various AlphaZero agents trained to play the board game of Hex at varying train-time and test-time compute. Trading Off Compute in Training and Inference in the game of Hex for AlphaZero agents.png
The Elo rating of various AlphaZero agents trained to play the board game of Hex at varying train-time and test-time compute.

Other than scaling up training compute, one can also scale up inference compute. As an example, the Elo rating of AlphaGo improves steadily as it is allowed to spend more time on its Monte Carlo Tree Search per play. [24] :Fig 4 For AlphaGo Zero, increasing Elo by 120 requires either 2x model size and training, or 2x test-time search. [25] Similarly, a language model for solving competition-level coding challenges, AlphaCode, consistently improved in performance with more search time. [26]

For Hex, 10x training-time compute trades for 15x test-time compute. [27] For Libratus for heads up no-limit Texas hold 'em, and Cicero for Diplomacy , and many other abstract games of partial information, inference-time searching improves performance at a similar tradeoff ratio, for up to 100,000x effective increase in training-time compute. [25]

In 2024, the OpenAI o1 report documented that o1's performance consistently improved with both increased train-time compute and test-time compute, and gave numerous examples of test-time compute scaling in mathematics, scientific reasoning, and coding tasks. [28] [29]

Other examples

Vision transformers

Vision transformers, similar to language transformers, exhibit scaling laws. A 2022 research trained vision transformers, with parameter counts , on image sets of sizes , for computing (in units of TPUv3-core-days). [30]

After training the model, it is finetuned on ImageNet training set. Let be the error probability of the finetuned model classifying ImageNet test set. They found .

Neural machine translation

Ghorbani, Behrooz et al. [31] studied scaling laws for neural machine translation (specifically, English as source, and German as target) in encoder-decoder Transformer models, trained until convergence on the same datasets (thus they did not fit scaling laws for computing cost or dataset size ). They varied They found three results:

  • is a scaling law function of , where are encoder and decoder parameter count. It is not simply a function of total parameter count . The function has form , where are fitted parameters. They found that minimizes loss if is held fixed.
  • "saturates" (that is, it reaches ) for smaller models when the training and testing datasets are "source-natural" than "target-natural". A "source-natural" data point means a pair of English-German sentences, and the model is asked to translate the English sentence into German, and the English sentence is written by a natural English writer, while the German sentence is translated from the English sentence by a machine translator. [32] To construct the two kinds of datasets, the authors collected natural English and German sentences online, then used machine translation to generate their translations.
  • As models grow larger, models trained on source-original datasets can achieve low loss but bad BLEU score. In contrast, models trained on target-original datasets achieve low loss and good BLEU score in tandem (Figure 10, 11 [31] ).

The authors hypothesize that source-natural datasets have uniform and dull target sentences, and so a model that is trained to predict the target sentences would quickly overfit.

[33] trained Transformers for machine translations with sizes on dataset sizes . They found the Kaplan et al (2020) [13] scaling law applied to machine translation: . They also found the BLEU score scaling as .

Transfer learning

Hernandez, Danny et al. [34] studied scaling laws for transfer learning in language models. They trained a family of Transformers in three ways:

  • pretraining on English, finetuning on Python
  • pretraining on an equal mix of English and Python, finetuning on Python
  • training on Python

The idea is that pretraining on English should help the model achieve low loss on a test set of Python text. Suppose the model has parameter count , and after being finetuned on Python tokens, it achieves some loss . We say that its "transferred token count" is , if another model with the same achieves the same after training on Python tokens.

They found for pretraining on English text, and for pretraining on English and non-Python code.

See also

Related Research Articles

<span class="mw-page-title-main">Power law</span> Functional relationship between two quantities

In statistics, a power law is a functional relationship between two quantities, where a relative change in one quantity results in a relative change in the other quantity proportional to the change raised to a constant exponent: one quantity varies as a power of another. The change is independent of the initial size of those quantities.

<span class="mw-page-title-main">Gamma distribution</span> Probability distribution

In probability theory and statistics, the gamma distribution is a versatile two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use:

  1. With a shape parameter k and a scale parameter θ
  2. With a shape parameter and an inverse scale parameter , called a rate parameter.
<span class="mw-page-title-main">Stable distribution</span> Distribution of variables which satisfies a stability property under linear combinations

In probability theory, a distribution is said to be stable if a linear combination of two independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stable if its distribution is stable. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.

Stochastic gradient descent is an iterative method for optimizing an objective function with suitable smoothness properties. It can be regarded as a stochastic approximation of gradient descent optimization, since it replaces the actual gradient by an estimate thereof. Especially in high-dimensional optimization problems this reduces the very high computational burden, achieving faster iterations in exchange for a lower convergence rate.

Tensor–vector–scalar gravity (TeVeS), developed by Jacob Bekenstein in 2004, is a relativistic generalization of Mordehai Milgrom's Modified Newtonian dynamics (MOND) paradigm.

In mathematical finance, the SABR model is a stochastic volatility model, which attempts to capture the volatility smile in derivatives markets. The name stands for "stochastic alpha, beta, rho", referring to the parameters of the model. The SABR model is widely used by practitioners in the financial industry, especially in the interest rate derivative markets. It was developed by Patrick S. Hagan, Deep Kumar, Andrew Lesniewski, and Diana Woodward.

<span class="mw-page-title-main">Truncated normal distribution</span> Type of probability distribution

In probability and statistics, the truncated normal distribution is the probability distribution derived from that of a normally distributed random variable by bounding the random variable from either below or above. The truncated normal distribution has wide applications in statistics and econometrics.

<span class="mw-page-title-main">Rectifier (neural networks)</span> Type of activation function

In the context of artificial neural networks, the rectifier or ReLU activation function is an activation function defined as the non-negative part of its argument:

In machine learning, local case-control sampling is an algorithm used to reduce the complexity of training a logistic regression classifier. The algorithm reduces the training complexity by selecting a small subsample of the original dataset for training. It assumes the availability of a (unreliable) pilot estimation of the parameters. It then performs a single pass over the entire dataset using the pilot estimation to identify the most "surprising" samples. In practice, the pilot may come from prior knowledge or training using a subsample of the dataset. The algorithm is most effective when the underlying dataset is imbalanced. It exploits the structures of conditional imbalanced datasets more efficiently than alternative methods, such as case control sampling and weighted case control sampling.

<span class="mw-page-title-main">Generative adversarial network</span> Deep learning method

A generative adversarial network (GAN) is a class of machine learning frameworks and a prominent framework for approaching generative artificial intelligence. The concept was initially developed by Ian Goodfellow and his colleagues in June 2014. In a GAN, two neural networks contest with each other in the form of a zero-sum game, where one agent's gain is another agent's loss.

Mixture of experts (MoE) is a machine learning technique where multiple expert networks (learners) are used to divide a problem space into homogeneous regions. MoE represents a form of ensemble learning.

Batch normalization is a method used to make training of artificial neural networks faster and more stable through normalization of the layers' inputs by re-centering and re-scaling. It was proposed by Sergey Ioffe and Christian Szegedy in 2015.

<span class="mw-page-title-main">Transformer (deep learning architecture)</span> Deep learning architecture for modelling sequential data

A transformer is a deep learning architecture developed by researchers at Google and based on the multi-head attention mechanism, proposed in the 2017 paper "Attention Is All You Need". Text is converted to numerical representations called tokens, and each token is converted into a vector via lookup from a word embedding table. At each layer, each token is then contextualized within the scope of the context window with other (unmasked) tokens via a parallel multi-head attention mechanism, allowing the signal for key tokens to be amplified and less important tokens to be diminished.

<span class="mw-page-title-main">Contrastive Language-Image Pre-training</span> Technique in neural networks for learning joint representations of text and images

Contrastive Language-Image Pre-training (CLIP) is a technique for training a pair of neural network models, one for image understanding and one for text understanding, using a contrastive objective. This method has enabled broad applications across multiple domains, including cross-modal retrieval, text-to-image generation, aesthetic ranking, and image captioning.

A graph neural network (GNN) belongs to a class of artificial neural networks for processing data that can be represented as graphs.

<span class="mw-page-title-main">Kaniadakis Weibull distribution</span> Continuous probability distribution

The Kaniadakis Weibull distribution is a probability distribution arising as a generalization of the Weibull distribution. It is one example of a Kaniadakis κ-distribution. The κ-Weibull distribution has been adopted successfully for describing a wide variety of complex systems in seismology, economy, epidemiology, among many others.

In statistics, a Kaniadakis distribution is a statistical distribution that emerges from the Kaniadakis statistics. There are several families of Kaniadakis distributions related to different constraints used in the maximization of the Kaniadakis entropy, such as the κ-Exponential distribution, κ-Gaussian distribution, Kaniadakis κ-Gamma distribution and κ-Weibull distribution. The κ-distributions have been applied for modeling a vast phenomenology of experimental statistical distributions in natural or artificial complex systems, such as, in epidemiology, quantum statistics, in astrophysics and cosmology, in geophysics, in economy, in machine learning.

In machine learning, diffusion models, also known as diffusion probabilistic models or score-based generative models, are a class of latent variable generative models. A diffusion model consists of three major components: the forward process, the reverse process, and the sampling procedure. The goal of diffusion models is to learn a diffusion process for a given dataset, such that the process can generate new elements that are distributed similarly as the original dataset. A diffusion model models data as generated by a diffusion process, whereby a new datum performs a random walk with drift through the space of all possible data. A trained diffusion model can be sampled in many ways, with different efficiency and quality.

In machine learning, normalization is a statistical technique with various applications. There are two main forms of normalization, namely data normalization and activation normalization. Data normalization includes methods that rescale input data so that the features have the same range, mean, variance, or other statistical properties. For instance, a popular choice of feature scaling method is min-max normalization, where each feature is transformed to have the same range. This solves the problem of different features having vastly different scales, for example if one feature is measured in kilometers and another in nanometers.

EfficientNet is a family of convolutional neural networks (CNNs) for computer vision published by researchers at Google AI in 2019. Its key innovation is compound scaling, which uniformly scales all dimensions of depth, width, and resolution using a single parameter.

References

  1. Bahri, Yasaman; Dyer, Ethan; Kaplan, Jared; Lee, Jaehoon; Sharma, Utkarsh (2024). "Explaining neural scaling laws". Proceedings of the National Academy of Sciences . 121 (27): e2311878121. arXiv: 2102.06701 . Bibcode:2024PNAS..12111878B. doi: 10.1073/pnas.2311878121 . PMC   11228526 . PMID   38913889.
  2. 1 2 Hestness, Joel; Narang, Sharan; Ardalani, Newsha; Diamos, Gregory; Jun, Heewoo; Kianinejad, Hassan; Patwary, Md Mostofa Ali; Yang, Yang; Zhou, Yanqi (2017-12-01). "Deep Learning Scaling is Predictable, Empirically". arXiv: 1712.00409 [cs.LG].
  3. Rajbhandari, Samyam; Li, Conglong; Yao, Zhewei; Zhang, Minjia; Aminabadi, Reza Yazdani; Awan, Ammar Ahmad; Rasley, Jeff; He, Yuxiong (2022-06-28). "DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale". Proceedings of the 39th International Conference on Machine Learning. PMLR: 18332–18346. arXiv: 2201.05596 .
  4. 1 2 3 Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
  5. 1 2 Zhou, Chunting; Liu, Pengfei; Xu, Puxin; Iyer, Srini; Sun, Jiao; Mao, Yuning; Ma, Xuezhe; Efrat, Avia; Yu, Ping; Yu, Lili; Zhang, Susan; Ghosh, Gargi; Lewis, Mike; Zettlemoyer, Luke; Levy, Omer (2023-05-01). "LIMA: Less Is More for Alignment". arXiv: 2305.11206 [cs.CL].
  6. "google/BIG-bench". Google. 2024-09-24. Retrieved 2024-09-25.
  7. Jones, Andy L. (2021). "Scaling Scaling Laws with Board Games". arXiv: 2104.03113 [cs.LG].
  8. LMSYS Chatbot leaderboard
  9. 1 2 3 Sam, Henighan, Tom Kaplan, Jared Katz, Mor Chen, Mark Hesse, Christopher Jackson, Jacob Jun, Heewoo Brown, Tom B. Dhariwal, Prafulla Gray, Scott Hallacy, Chris Mann, Benjamin Radford, Alec Ramesh, Aditya Ryder, Nick Ziegler, Daniel M. Schulman, John Amodei, Dario McCandlish (2020-10-27). Scaling Laws for Autoregressive Generative Modeling. OCLC   1228442047.{{cite book}}: CS1 maint: multiple names: authors list (link)
  10. Brown, Tom B.; Mann, Benjamin; Ryder, Nick; Subbiah, Melanie; Kaplan, J.; Dhariwal, Prafulla; Neelakantan, Arvind; Shyam, Pranav; Sastry, Girish; Askell, Amanda; Agarwal, Sandhini; Herbert-Voss, Ariel; Krueger, Gretchen; Henighan, T.; Child, Rewon (2020-05-28). "Language Models are Few-Shot Learners". arXiv: 2005.14165 [cs.CL].
  11. Besiroglu, Tamay (2024-04-17). "Chinchilla Scaling: A Replication Attempt". Epoch AI. Retrieved 2024-09-24.
  12. Hoffmann, Jordan; Borgeaud, Sebastian; Mensch, Arthur; Buchatskaya, Elena; Cai, Trevor; Rutherford, Eliza; Casas, Diego de Las; Hendricks, Lisa Anne; Welbl, Johannes; Clark, Aidan; Hennigan, Tom; Noland, Eric; Millican, Katie; Driessche, George van den; Damoc, Bogdan (2022-03-29). "Training Compute-Optimal Large Language Models". arXiv: 2203.15556 [cs.CL].
  13. 1 2 Kaplan, Jared; McCandlish, Sam; Henighan, Tom; Brown, Tom B.; Chess, Benjamin; Child, Rewon; Gray, Scott; Radford, Alec; Wu, Jeffrey; Amodei, Dario (2020). "Scaling Laws for Neural Language Models". CoRR. abs/2001.08361. arXiv: 2001.08361 .
  14. Besiroglu, Tamay; Erdil, Ege; Barnett, Matthew; You, Josh (2024-04-15). "Chinchilla Scaling: A replication attempt". arXiv: 2404.10102 [cs.AI].
  15. Porian, Tomer; Wortsman, Mitchell; Jitsev, Jenia; Schmidt, Ludwig; Carmon, Yair (2024-07-25), Resolving Discrepancies in Compute-Optimal Scaling of Language Models, arXiv: 2406.19146 , retrieved 2024-10-22
  16. Pearce, Tim; Song, Jinyeop (2024), Reconciling Kaplan and Chinchilla Scaling Laws, arXiv: 2406.12907 , retrieved 2024-11-10
  17. Sorscher, Ben; Geirhos, Robert; Shekhar, Shashank; Ganguli, Surya; Morcos, Ari S. (2023-04-21). "Beyond neural scaling laws: beating power law scaling via data pruning". arXiv: 2206.14486 [cs.LG].
  18. Tay, Yi; Wei, Jason; Chung, Hyung Won; Tran, Vinh Q.; So, David R.; Shakeri, Siamak; Garcia, Xavier; Zheng, Huaixiu Steven; Rao, Jinfeng (2022-11-16). "Transcending Scaling Laws with 0.1% Extra Compute". arXiv: 2210.11399 [cs.CL].
  19. Muennighoff, Niklas; Rush, Alexander; Barak, Boaz; Le Scao, Teven; Tazi, Nouamane; Piktus, Aleksandra; Pyysalo, Sampo; Wolf, Thomas; Raffel, Colin A. (2023-12-15). "Scaling Data-Constrained Language Models". Advances in Neural Information Processing Systems. 36: 50358–50376. arXiv: 2305.16264 .
  20. Li, Yuanzhi; Bubeck, Sébastien; Eldan, Ronen; Del Giorno, Allie; Gunasekar, Suriya; Lee, Yin Tat (2023-09-11). "Textbooks Are All You Need II: phi-1.5 technical report". arXiv: 2309.05463 [cs.CL].
  21. Sardana, Nikhil; Frankle, Jonathan (2023-12-31). "Beyond Chinchilla-Optimal: Accounting for Inference in Language Model Scaling Laws". arXiv: 2401.00448 [cs.LG].
  22. Gadre, Samir Yitzhak; Smyrnis, Georgios; Shankar, Vaishaal; Gururangan, Suchin; Wortsman, Mitchell; Shao, Rulin; Mercat, Jean; Fang, Alex; Li, Jeffrey (2024-03-13). "Language models scale reliably with over-training and on downstream tasks". arXiv: 2403.08540 [cs.CL].
  23. Caballero, Ethan; Gupta, Kshitij; Rish, Irina; Krueger, David (2022). "Broken Neural Scaling Laws". arXiv: 2210.14891 [cs.LG].
  24. Silver, David; Huang, Aja; Maddison, Chris J.; Guez, Arthur; Sifre, Laurent; van den Driessche, George; Schrittwieser, Julian; Antonoglou, Ioannis; Panneershelvam, Veda; Lanctot, Marc; Dieleman, Sander; Grewe, Dominik; Nham, John; Kalchbrenner, Nal; Sutskever, Ilya (January 2016). "Mastering the game of Go with deep neural networks and tree search". Nature. 529 (7587): 484–489. Bibcode:2016Natur.529..484S. doi:10.1038/nature16961. ISSN   1476-4687. PMID   26819042.
  25. 1 2 Noam, Brown (2024-09-17). Parables on the Power of Planning in AI: From Poker to Diplomacy: Noam Brown (OpenAI) (Video). Retrieved 2024-09-24 via YouTube. Lecture at Paul G. Allen School on Thursday, May 23, 2024, 3:30 pm
  26. Li, Yujia; Choi, David; Chung, Junyoung; Kushman, Nate; Schrittwieser, Julian; Leblond, Rémi; Eccles, Tom; Keeling, James; Gimeno, Felix; Dal Lago, Agustin; Hubert, Thomas; Choy, Peter; de Masson d’Autume, Cyprien; Babuschkin, Igor; Chen, Xinyun (2022-12-09). "Competition-level code generation with AlphaCode". Science. 378 (6624): 1092–1097. arXiv: 2203.07814 . Bibcode:2022Sci...378.1092L. doi:10.1126/science.abq1158. ISSN   0036-8075. PMID   36480631.
  27. Jones, Andy L. (2021-04-15). "Scaling Scaling Laws with Board Games". arXiv: 2104.03113 [cs.LG].
  28. Villalobos, Pablo (2023-07-28). "Trading Off Compute in Training and Inference". Epoch AI. Retrieved 2024-09-24.
  29. "Learning to Reason with LLMs". OpenAI. Retrieved 2024-09-16.
  30. Zhai, Xiaohua; Kolesnikov, Alexander; Houlsby, Neil; Beyer, Lucas (2022). "Scaling Vision Transformers". CVPR: 12104–12113.
  31. 1 2 Ghorbani, Behrooz; Firat, Orhan; Freitag, Markus; Bapna, Ankur; Krikun, Maxim; Garcia, Xavier; Chelba, Ciprian; Cherry, Colin (2021-09-01). "Scaling Laws for Neural Machine Translation". arXiv: 2109.07740 [cs.LG].
  32. Chen, Mia Xu; Firat, Orhan; Bapna, Ankur; Johnson, Melvin; Macherey, Wolfgang; Foster, George; Jones, Llion; Schuster, Mike; Shazeer, Noam; Parmar, Niki; Vaswani, Ashish; Uszkoreit, Jakob; Kaiser, Lukasz; Chen, Zhifeng; Wu, Yonghui (July 2018). "The Best of Both Worlds: Combining Recent Advances in Neural Machine Translation". Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association for Computational Linguistics: 76–86. arXiv: 1804.09849 . doi:10.18653/v1/P18-1008.
  33. Gordon, Mitchell A; Duh, Kevin; Kaplan, Jared (2021). "Data and Parameter Scaling Laws for Neural Machine Translation". Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics. pp. 5915–5922. doi: 10.18653/v1/2021.emnlp-main.478 .
  34. Hernandez, Danny; Kaplan, Jared; Henighan, Tom; McCandlish, Sam (2021-02-01). "Scaling Laws for Transfer". arXiv: 2102.01293 [cs.LG].