North Galapagos Microplate

Last updated
North Galapagos Microplate
GalapagosPlate.png
Type Minor
Movement1Counterclockwise 90 degrees
Speed1undefined
Features Pacific Ocean
1Relative to the African Plate

The North Galapagos Microplate is a small tectonic plate off the west coast of South America north of the Galapagos Islands. 3°45′N101°45′W / 3.75°N 101.75°W / 3.75; -101.75 [1] It is rotating counterclockwise between three much larger crustal plates around it, the Nazca, Cocos and Pacific Plates. To its south, another small microplate, the Galapagos Microplate is likewise rotating, but clockwise. [2] Both microplates "mesh" along the interface between them.

Related Research Articles

<span class="mw-page-title-main">Cayman Trough</span> Complex transform fault zone pull-apart basin on the floor of the western Caribbean Sea

The Cayman Trough is a complex transform fault zone pull-apart basin which contains a small spreading ridge, the Mid-Cayman Rise, on the floor of the western Caribbean Sea between Jamaica and the Cayman Islands. It is the deepest point in the Caribbean Sea and forms part of the tectonic boundary between the North American Plate and the Caribbean Plate. It extends from the Windward Passage, going south of the Sierra Maestra of Cuba toward Guatemala. The transform fault continues onshore as the Polochic-Motagua fault system, which consists of the Polochic and Motagua faults. This system continues on until the Chiapas massif where it is part of the diffuse triple junction of the North American, Caribbean and Cocos plates.

<span class="mw-page-title-main">Nazca Plate</span> Oceanic tectonic plate in the eastern Pacific Ocean basin

The Nazca Plate or Nasca Plate, named after the Nazca region of southern Peru, is an oceanic tectonic plate in the eastern Pacific Ocean basin off the west coast of South America. The ongoing subduction, along the Peru–Chile Trench, of the Nazca Plate under the South American Plate is largely responsible for the Andean orogeny. The Nazca Plate is bounded on the west by the Pacific Plate and to the south by the Antarctic Plate through the East Pacific Rise and the Chile Rise respectively. The movement of the Nazca Plate over several hotspots has created some volcanic islands as well as east–west running seamount chains that subduct under South America. Nazca is a relatively young plate both in terms of the age of its rocks and its existence as an independent plate having been formed from the break-up of the Farallon Plate about 23 million years ago. The oldest rocks of the plate are about 50 million years old.

<span class="mw-page-title-main">Cocos Plate</span> Young oceanic tectonic plate beneath the Pacific Ocean off the west coast of Central America

The Cocos Plate is a young oceanic tectonic plate beneath the Pacific Ocean off the west coast of Central America, named for Cocos Island, which rides upon it. The Cocos Plate was created approximately 23 million years ago when the Farallon Plate broke into two pieces, which also created the Nazca Plate. The Cocos Plate also broke into two pieces, creating the small Rivera Plate. The Cocos Plate is bounded by several different plates. To the northeast it is bounded by the North American Plate and the Caribbean Plate. To the west it is bounded by the Pacific Plate and to the south by the Nazca Plate.

<span class="mw-page-title-main">Microplate</span> Flat plate with multiple "wells" used as small test tubes

A microplate, also known as a microtiter plate, microwell plate or multiwell, is a flat plate with multiple "wells" used as small test tubes. The microplate has become a standard tool in analytical research and clinical diagnostic testing laboratories. A very common usage is in the enzyme-linked immunosorbent assay (ELISA), the basis of most modern medical diagnostic testing in humans and animals.

<span class="mw-page-title-main">Australian Plate</span> Major tectonic plate separated from Indo-Australian Plate about 3 million years ago

The Australian Plate is a major tectonic plate in the eastern and, largely, southern hemispheres. Originally a part of the ancient continent of Gondwana, Australia remained connected to India and Antarctica until approximately 100 million years ago when India broke away and began moving north. Australia and Antarctica had begun rifting by 96 million years ago and completely separated a while after this, some believing as recently as 45 million years ago ,but most accepting presently that this had occurred by 60 million years ago.

<span class="mw-page-title-main">Triple junction</span> Meeting point of three tectonic plates

A triple junction is the point where the boundaries of three tectonic plates meet. At the triple junction each of the three boundaries will be one of three types – a ridge (R), trench (T) or transform fault (F) – and triple junctions can be described according to the types of plate margin that meet at them. Of the ten possible types of triple junctions only a few are stable through time. The meeting of four or more plates is also theoretically possible but junctions will only exist instantaneously.

<span class="mw-page-title-main">Caribbean Plate</span> A mostly oceanic tectonic plate including part of Central America and the Caribbean Sea

The Caribbean Plate is a mostly oceanic tectonic plate underlying Central America and the Caribbean Sea off the northern coast of South America.

The Tonga Plate is a small southwest Pacific tectonic plate or microplate. It is centered at approximately 19° S. latitude and 173° E. longitude. The plate is an elongated plate oriented NNE - SSW and is a northward continuation of the Kermadec linear zone north of New Zealand. The plate is bounded on the east and north by the Pacific Plate, on the northwest by the Niuafo’ou Microplate, on the west and south by the Indo-Australian Plate. The Tonga plate is subducting the Pacific plate along the Tonga Trench. This subduction turns into a transform fault boundary north of Tonga. An active rift or spreading center separates the Tonga Plate from the Australian Plate and the Niuafo’ou microplate to the west. The Tonga Plate is seismically very active and is rotating clockwise.

<span class="mw-page-title-main">Galápagos Microplate</span> Very small tectonic plate at the Galapagos Triple Junction

The Galapagos Microplate (GMP) is a geological feature of the oceanic crust located at 1°50' N, offshore of the west coast of Colombia. The GMP is collocated with the Galapagos Triple Junction, which is an atypical ridge-ridge-ridge triple junction. At the Galapagos Triple Junction, the Pacific Plate, Cocos Plate, and Nazca Plate meet incompletely, forming two counter-rotating microplates at the junction of the Cocos-Nazca, Pacific-Cocos, and Pacific-Nazca spreading ridges.

<span class="mw-page-title-main">Easter Microplate</span> Very small tectonic plate to the west of Easter Island

Easter Plate is a tectonic microplate located to the west of Easter Island off the west coast of South America in the middle of the Pacific Ocean, bordering the Nazca Plate to the east and the Pacific Plate to the west. It was discovered from looking at earthquake distributions that were offset from the previously perceived Nazca-Pacific Divergent boundary. This young plate is 5.25 million years old and is considered a microplate because it is small with an area of approximately 160,000 square kilometres (62,000 sq mi). Seafloor spreading along the Easter microplate's borders have some of the highest global rates, ranging from 50 to 140 millimetres /yr.

<span class="mw-page-title-main">Azores Triple Junction</span> Tectonic plates intersection

<span class="mw-page-title-main">Galapagos Triple Junction</span> Place where the boundaries of the Cocos Plate, the Nazca Plate, and the Pacific Plate meet

The Galapagos Triple Junction is a geological area in the eastern Pacific Ocean several hundred miles west of the Galapagos Islands where three tectonic plates - the Cocos Plate, the Nazca Plate and the Pacific Plate - meet. It is an unusual type of triple junction in which the three plates do not meet at a simple intersection. Instead, the junction includes two small microplates, the Galapagos Microplate and the Northern Galapagos Microplate, caught in the junction, turning synchronously with respect to each other and separated by the Hess Deep rift.

<span class="mw-page-title-main">Conway Reef Plate</span> Small tectonic plate in the south Pacific west of Fiji

The Conway Reef Plate is a small tectonic plate (microplate) located in the south Pacific west of Fiji. The western boundary is with the New Hebrides Plate while the eastern is with the Australian Plate. A short transform boundary also exists with the Balmoral Reef Plate. Much of the plate underlies the south central portion of the North Fiji Basin.

<span class="mw-page-title-main">Juan Fernández Plate</span> Very small tectonic plate in the southern Pacific Ocean

The Juan Fernandez Plate is a microplate in the Pacific Ocean. With a surface area of approximately 105 km2, the microplate is located between 32° and 35°S and 109° and 112°W. The plate is located at a triple junction between the Pacific Plate, Antarctic Plate, and Nazca Plate. Approximately 2000 km to the west of South America, it is, on average, 3000 meters deep with its shallowest point coming to approximately 1600 meters, and its deepest point reaching 4400 meters.

<span class="mw-page-title-main">Manus Plate</span> Tiny tectonic plate northeast of New Guinea

The Manus Plate is a 100-km microplate located northeast of New Guinea. The Manus Plate was formed in between the North Bismark Plate and the South Bismark Plate. The Manus Plate currently rotates counter-clockwise in the Melanesia area.

<span class="mw-page-title-main">Panama Plate</span> Small tectonic plate in Central America

The Panama Plate is a microplate; a small tectonic plate that exists between two actively spreading ridges and moves relatively independently of its surrounding plates. The Panama plate is located between the Cocos Plate and Nazca Plate to the south and the Caribbean Plate to the north. Most of its borders are convergent boundaries including a subduction zone to the west. It consists, for the most part, of the countries of Panama and Costa Rica.

<span class="mw-page-title-main">Gonâve Microplate</span> Part of the boundary between the North American Plate and the Caribbean Plate

The Gonâve Microplate forms part of the boundary between the North American Plate and the Caribbean Plate. It is bounded to the west by the Mid-Cayman Rise spreading center, to the north by the Septentrional-Oriente fault zone and to the south by the Walton fault zone and the Enriquillo–Plantain Garden fault zone. The existence of this microplate was first proposed in 1991. This has been confirmed by GPS measurements, which show that the overall displacement between the two main plates is split almost equally between the transform fault zones that bound the Gonâve microplate. The microplate is expected to eventually become accreted to the North American Plate.

<span class="mw-page-title-main">Geology of the Pacific Ocean</span> Overview about the geology of the Pacific Ocean

The Pacific Ocean evolved in the Mesozoic from the Panthalassic Ocean, which had formed when Rodinia rifted apart around 750 Ma. The first ocean floor which is part of the current Pacific Plate began 160 Ma to the west of the central Pacific and subsequently developed into the largest oceanic plate on Earth.

<span class="mw-page-title-main">Coiba Plate</span> Tectonic plate off the coast south of Panama and northwestern Colombia

The Coiba Plate is a small tectonic plate (microplate) located off the coasts south of Panama and northwestern Colombia. It is named after Coiba, the largest island of Central America, just north of the plate offshore southern Panama. It is bounded on the west by the Cocos Plate, on the south by the Malpelo Plate, on the east by the North Andes Plate, and on the north by the Panama Plate. This microplate was previously assumed to be part of the Nazca Plate, forming the northeastern tongue of the Nazca Plate together with the Malpelo Plate. Bordering the Coiba Plate on the east are the north-south striking Bahía Solano Fault and east of that, the Serranía de Baudó, an isolated mountain chain in northwestern Chocó, Colombia.

References

  1. "Columbia University Researchers Find Key to the Formation of New Seafloor Spreading Centers". December 3, 2002. Retrieved October 6, 2010.
  2. "Galapagos Microplate". February 23, 2005. Archived from the original on July 26, 2010. Retrieved October 6, 2010.

Bird, P. (2003) An updated digital model of plate boundaries, Geochemistry, Geophysics, Geosystems, 4(3), 1027, doi : 10.1029/2001GC000252.