Ohanapecosh Formation

Last updated
Ohanapecosh Formation
Stratigraphic range: Priabonian
~36–28  Ma
Type Geological formation
Sub-unitsChinook Pass association, White Pass association, Johnson Creek association
UnderliesPleistocene terrace deposits
Overlies Puget Group, Spiketon Formation, Renton Formation, & Naches Formation
Area>400 square kilometres (99,000 acres)
Thickness9,000–10,000 m (30,000–33,000 ft)
Lithology
Primary Pyroclastic flow, rhyolite
OtherVolcanic clastic rocks, pumice, lapilli, phenocrysts, plagioclase
Location
Coordinates 28°36′N97°42′W / 28.6°N 97.7°W / 28.6; -97.7
Approximate paleocoordinates 29°00′N95°18′W / 29.0°N 95.3°W / 29.0; -95.3
Region Mount Rainier National Park, Lewis, & Yakima counties, Washington
CountryFlag of the United States (23px).png  United States
Extent White Pass (Washington)
Type section
Named for Ohanapecosh Hotsprings
Named byIngram
Year defined1954
Usa edcp relief location map.png
Yellow ffff00 pog.svg
Ohanapecosh Formation (the United States)
USA Washington relief location map.jpg
Yellow ffff00 pog.svg
Ohanapecosh Formation (Washington (state))

The volcanic clastic Ohanapecosh Formation is an early state of cascade volcanism. It has been dated to the middle Oligocene [36 to 28 Ma]. [1] The strata are as much as 3 kilometres (1.9 miles) thick, with exposures visible in more than 400 square kilometres (99,000 acres) of a total area exceeding 700 square kilometres (170,000 acres). It is found throughout Mount Rainier National Park and the surroundings mountains. It is the foundation on which the Mount Rainier volcano was built. The formation has been identified in the Snoqualmie area to the north, and as far south as the Columbia River Gorge, including Mount St. Helens and Mount Adams. It extends from the west at Mount Rainier and Lake Tapps, east to Little Naches River valley. [1]

Contents

Description

The contact of the Ohanapecosh Formation on the Puget Group is everywhere conformable and the Spiketon Formation and Renton Formation reflect a continuous process without a break in time. In contrast, the contact with the Naches Formation is an unconformity as seen in the Summit Creek Sandstone (~43 to 37 Ma) in the areas from White Pass east to the Naches River. [1] In the Mount Rainier National Park area, the Ohanapecosh Formation is overlain by the Oligocene (25-27 Ma) Stevens Ridge Member, that is the lower part of the Fifes Peaks Formation. At Backbone Ridge, southeast of Mount Rainier, clasts of the Ohanapecosh Formation and tree trunks are found in the base of the lowest Stevens Ridge Member. [1]

Various late Oligocene and Miocene eruptive centers are preserved in central Washington. The Mount Aix caldera (late Oligocene), Tieton volcano (Miocene) and Columbia River Basalt Group (Miocene) are late Oligocene and Miocene eruptive centers east of the Mount Rainier National Park. Fifes Peaks volcano is to the northeast of the national park, and the Tatoosh pluton is to the south. [1] The Eocene-Miocene formations are covered by thick Quaternary volcaniclastic deposits and lavas.

Lithology

The Ohanapecosh Formation is composed of volcanic clastic rocks and lava flows. The lava flows are interbedded with the coarse volcanic clastic rocks which are mostly mudflow deposits. Locally they can be thick, grading into finer clastic rocks. The ash flows and rhyolite flows are a small portion, less than 1 percent, of the formation. The Ohanapecosh Formation has been divided into three parts: (1) lava flow mudflow complexes, (2) adjacent accumulations of volcanic clastic rocks, and (3) ash flows and rhyolites. [2]

Lava flow-mudflow complexes

Two major complexes of lava flows and associated mudflow deposits have been identified. The smaller one is in an irregular north-trending belt east and southeast of Mount Rainier. It is best exposed in the steep cirque walls of the Sarvent Glacier, i.e. Banshee Peak. The larger lava complex is in the Mount Wow-Satulick Mountain area, the southwestern part of the park. It can also be found in the valley of the North Puyallup River on the western park boundary. [2] The Ohanapecosh formation of these areas is separated by extensive outcrops of the Tatoosh pluton and by deposits from the Mount Rainier volcano. [2] The lava flows and interbedded mudflows are seen on Stevens Peak. These complexes are lens shaped. The maximum thickness of the Sarvent complex is about 3,800 feet (1,200 m), and the Mount Wow complex is at least 7,000 feet (2,100 m). [2] Lava flows and coarse mudflow deposits form more than 70 percent of these units. Fresh exposures of Ohanapecosh lava are dark brownish gray, greenish gray, or maroon; most weathered surfaces are brown or maroon. Individual flows are from 10 to 100 feet (3.0 to 30.5 m) thick. All the Ohanapecosh lavas have been pervasively altered. [2]

Related Research Articles

<span class="mw-page-title-main">Glacier Peak</span> Stratovolcano in Washington

Glacier Peak or Dakobed is the most isolated of the five major stratovolcanoes of the Cascade Volcanic Arc in the U.S state of Washington. Located in the Glacier Peak Wilderness in Mount Baker–Snoqualmie National Forest, the volcano is visible from the west in Seattle, and from the north in the higher areas of eastern suburbs of Vancouver such as Coquitlam, New Westminster and Port Coquitlam. The volcano is the fourth tallest peak in Washington state, and not as much is known about it compared to other volcanoes in the area. Local Native Americans have recognized Glacier Peak and other Washington volcanoes in their histories and stories. When American explorers reached the region, they learned basic information about surrounding landforms, but did not initially understand that Glacier Peak was a volcano. Positioned in Snohomish County, the volcano is only 70 miles (110 km) northeast of downtown Seattle. From locations in northern Seattle and northward, Glacier Peak is closer than the more famous Mount Rainier (Tahoma), but as Glacier Peak is set farther into the Cascades and almost 4,000 feet (1,200 m) shorter, it is much less noticeable than Mount Rainier.

<span class="mw-page-title-main">Anahim Volcanic Belt</span> Chain of volcanoes and related magmatic features in British Columbia, Canada

The Anahim Volcanic Belt (AVB) is a west–east trending chain of volcanoes and related magmatic features in British Columbia, Canada. It extends from Athlone Island on the Central Coast, running eastward through the strongly uplifted and deeply dissected Coast Mountains to near the community of Nazko on the Interior Plateau. The AVB is delineated as three west-to-east segments that differ in age and structure. A wide variety of igneous rocks with differing compositions occur throughout these segments, comprising landforms such as volcanic cones, volcanic plugs, lava domes, shield volcanoes and intrusions.

<span class="mw-page-title-main">Garibaldi Volcanic Belt</span> Volcanic chain in southwestern British Columbia, Canada

The Garibaldi Volcanic Belt is a northwest–southeast trending volcanic chain in the Pacific Ranges of the Coast Mountains that extends from Watts Point in the south to the Ha-Iltzuk Icefield in the north. This chain of volcanoes is located in southwestern British Columbia, Canada. It forms the northernmost segment of the Cascade Volcanic Arc, which includes Mount St. Helens and Mount Baker. Most volcanoes of the Garibaldi chain are dormant stratovolcanoes and subglacial volcanoes that have been eroded by glacial ice. Less common volcanic landforms include cinder cones, volcanic plugs, lava domes and calderas. These diverse formations were created by different styles of volcanic activity, including Peléan and Plinian eruptions.

<span class="mw-page-title-main">Goat Rocks</span> Extinct stratovolcano in United States of America

Goat Rocks is an extinct stratovolcano in the Cascade Range, located between Mount Rainier and Mount Adams in southern Washington, in the United States. Part of the Cascade Volcanoes, it was formed by the subduction of the Juan de Fuca Plate under the western edge of the North American Plate. The volcano was active from 3.2 million years ago until eruptions ceased between 1 and 0.5 million years ago. Throughout its complex eruptive history, volcanism shifted from silicic explosive eruptions to voluminous, mafic activity.

<span class="mw-page-title-main">Tweed Volcano</span> Volcano in New South Wales, Australia

Tweed Volcano is a partially eroded Early Miocene shield volcano located in northeastern New South Wales, which formed when this region of Australia passed over the East Australia hotspot around 23 million years ago. Mount Warning, Lamington Plateau and the Border Ranges between New South Wales and Queensland are among the remnants of this volcano that was originally over 100 kilometres (62 mi) in diameter and nearly twice the height of Mount Warning today, at 1,156 metres (3,793 ft). Despite its size, Tweed Volcano was not a supervolcano; other shield volcanoes—such as in the Hawaiian Islands—are much larger. In the 23 million years since the volcano was active, erosion has been extensive, forming a large erosion caldera around the volcanic plug of Mount Warning. Its erosion caldera is the largest in the Southern Hemisphere.

<span class="mw-page-title-main">Spectrum Range</span> Mountain range in British Columbia, Canada

The Spectrum Range, formerly gazetted as the Spectrum Mountains and the Rainbow Mountains, is a small mountain range in Cassiar Land District of northwestern British Columbia, Canada. Located at the southern end of the Tahltan Highland, it borders the Skeena Mountains in the east and the Boundary Ranges of the Coast Mountains in the west. The Spectrum Range is surrounded by the Arctic Lake Plateau in the southwest and the Kitsu Plateau in the northwest, both of which contain volcanic features such as cinder cones. It lies at the southern end of the Mount Edziza volcanic complex which includes the two neighbouring plateaus as well as Mount Edziza and the Big Raven Plateau to the north. The mountain range is drained on all sides by streams within the Stikine River watershed and, unlike Mount Edziza to the north, contains relatively small separate glaciers. Mount Edziza Provincial Park is the main protected area surrounding the Spectrum Range.

<span class="mw-page-title-main">Cascade Volcanoes</span> Chain of stratovolcanoes in western North America

The Cascade Volcanoes are a number of volcanoes in a volcanic arc in western North America, extending from southwestern British Columbia through Washington and Oregon to Northern California, a distance of well over 700 miles (1,100 km). The arc formed due to subduction along the Cascadia subduction zone. Although taking its name from the Cascade Range, this term is a geologic grouping rather than a geographic one, and the Cascade Volcanoes extend north into the Coast Mountains, past the Fraser River which is the northward limit of the Cascade Range proper.

<span class="mw-page-title-main">Geology of the Pacific Northwest</span>

The geology of the Pacific Northwest includes the composition, structure, physical properties and the processes that shape the Pacific Northwest region of North America. The region is part of the Ring of Fire: the subduction of the Pacific and Farallon Plates under the North American Plate is responsible for many of the area's scenic features as well as some of its hazards, such as volcanoes, earthquakes, and landslides.

The Mount Pleasant Caldera is a large eroded Late Devonian volcanic caldera complex, located in the northern Appalachian Mountains of southwestern New Brunswick, Canada. It is one of few noticeable pre-Cenozoic calderas, and its formation is associated to a period of crustal thinning that followed the Acadian orogeny in the northern Appalachian Mountains. It sits relatively near to the coastline.

<span class="mw-page-title-main">Big Raven Plateau</span> Plateau in British Columbia, Canada

The Big Raven Plateau is an intermontane plateau in Cassiar Land District of northwestern British Columbia, Canada. It lies on the Tahltan Highland and is surrounded by several valleys, including those of Mess Creek, Kakiddi Creek, Chakima Creek, Walkout Creek and the Klastline River. The plateau is drained by many small streams that flow into these neighbouring valleys and, unlike the valleys, it is relatively barren of vegetation. Stream erosion has resulted in the creation of canyons with intervening ridges on the eastern and western sides of the plateau, resulting in the creation of rugged terrain. The plateau is in Mount Edziza Provincial Park which is one of the largest provincial parks in British Columbia. Access to the Big Raven Plateau is mainly by aircraft or by a network of footpaths from surrounding roads.

<span class="mw-page-title-main">Kitsu Plateau</span> Plateau in British Columbia, Canada

The Kitsu Plateau is a small intermontane plateau in Cassiar Land District of northwestern British Columbia, Canada. It lies on the Tahltan Highland and is surrounded by several valleys, including those of Mess Creek, Nagha Creek and Raspberry Creek. The plateau is drained by many small streams that flow into these neighbouring valleys and, unlike the valleys, it is relatively barren of vegetation. Surrounding the Kitsu Plateau is Mount Edziza Provincial Park which is one of the largest provincial parks in British Columbia. Access to this remote plateau is mainly by aircraft since motorized vehicles are prohibited from entering Mount Edziza Provincial Park.

<span class="mw-page-title-main">Tennena Cone</span> Volcanic cone in British Columbia, Canada

Tennena Cone, alternatively Icebridge Cone, is a small volcanic cone in Cassiar Land District of northwestern British Columbia, Canada. It has an elevation of 2,390 metres and lies on the western flank of Ice Peak, the prominent south peak of Mount Edziza. The cone is almost completely surrounded by glacial ice of Mount Edziza's ice cap which covers an area of around 70 square kilometres. Tennena Cone is 200 metres high, 1,200 metres long and up to 600 metres wide, its symmetrical structure resembling a black pyramid. The cone and the surrounding area are in Mount Edziza Provincial Park which also includes the Spectrum Range to the south.

<span class="mw-page-title-main">Specimen Ridge</span> Mountain ridge in Wyoming, United States

Specimen Ridge, el. 8,379 feet (2,554 m) is an approximately 8.5-mile (13.7 km) ridge along the south rim of the Lamar Valley in Yellowstone National Park. The ridge separates the Lamar Valley from Mirror Plateau. The ridge is oriented northwest to southeast from the Tower Junction area to Amethyst Mountain. The ridge is known for its abundance of amethyst, opal and petrified wood. It was referred to as Specimen Mountain by local miners and was probably named by prospectors well before 1870. The south side of the ridge is traversed by the 18.8-mile (30.3 km) Specimen Ridge Trail between Tower Junction and Soda Butte Creek. The trail passes through the Petrified Forest and over the summit of Amethyst Mountain el. 9,614 feet (2,930 m).

<span class="mw-page-title-main">Canadian Cascade Arc</span> Canadian segment of the North American Cascade Volcanic Arc

The Canadian Cascade Arc, also called the Canadian Cascades, is the Canadian segment of the North American Cascade Volcanic Arc. Located entirely within the Canadian province of British Columbia, it extends from the Cascade Mountains in the south to the Coast Mountains in the north. Specifically, the southern end of the Canadian Cascades begin at the Canada–United States border. However, the specific boundaries of the northern end are not precisely known and the geology in this part of the volcanic arc is poorly understood. It is widely accepted by geologists that the Canadian Cascade Arc extends through the Pacific Ranges of the Coast Mountains. However, others have expressed concern that the volcanic arc possibly extends further north into the Kitimat Ranges, another subdivision of the Coast Mountains, and even as far north as Haida Gwaii.

<span class="mw-page-title-main">Geology of Guam</span>

The geology of Guam formed as a result of mafic, felsic and intermediate composition volcanic rocks erupting below the ocean, building up the base of the island in the Eocene, between 33.9 and 56 million years ago. The island emerged above the water in the Eocene, although the volcanic crater collapsed. A second volcanic crater formed on the south of the island in the Oligocene and Miocene. In the shallow water, numerous limestone formations took shape, with thick alternating layers of volcanic material. The second crater collapsed and Guam went through a period in which it was almost entirely submerged, resembling a swampy atoll, until structural deformation slowly uplifted different parts of the island to their present topography. The process of uplift led to widespread erosion and clay formation, as well as the deposition of different types of limestone, reflecting different water depths.

<span class="mw-page-title-main">Geology of Ascension Island</span>

The geology of Ascension Island is the geologically young, exposed part of a large volcano, 80 kilometers west of the Mid-Atlantic Ridge. The island formed within the last six to seven million years and is primarily mafic rock with some felsic rock.

<span class="mw-page-title-main">Geology of Bosnia and Herzegovina</span>

The geology of Bosnia & Herzegovina is the study of rocks, minerals, water, landforms and geologic history in the country. The oldest rocks exposed at or near the surface date to the Paleozoic and the Precambrian geologic history of the region remains poorly understood. Complex assemblages of flysch, ophiolite, mélange and igneous plutons together with thick sedimentary units are a defining characteristic of the Dinaric Alps, also known as the Dinaride Mountains, which dominate much of the country's landscape.

<span class="mw-page-title-main">Geology and geological history of California</span>

The geology of California is highly complex, with numerous mountain ranges, substantial faulting and tectonic activity, rich natural resources and a history of both ancient and comparatively recent intense geological activity. The area formed as a series of small island arcs, deep-ocean sediments and mafic oceanic crust accreted to the western edge of North America, producing a series of deep basins and high mountain ranges.

<span class="mw-page-title-main">Hannegan caldera</span> Geologic caldera in Washington (state)

Hannegan caldera is a 3.72 million year old volcanic collapse structure in the North Cascades of the U.S. state of Washington. The caldera collapsed during two separate volcanic eruptions that produced as much as 140 km3 of rhyolite ash.

References

  1. 1 2 3 4 5 Martin Jutzeler, Characteristics and origin of subaqueous pumice-rich pyroclastic facies: Ohanapecosh Formation (USA) and Dogashima Formation (Japan); University of Tasmania, Australia, April 2012
  2. 1 2 3 4 5 Fiske, Richard S., Clifford A. Hopson, and Aaron C. Waters; Geology of Mount Rainier National Park Washington; Geological Survey Professional Paper 444; United States Government Printing Office, Washington, D.C.; 1963