Oudemansiella canarii

Last updated

Oudemansiella canarii
Oudemansiella canarii - Flickr - Dick Culbert.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Basidiomycota
Class: Agaricomycetes
Order: Agaricales
Family: Physalacriaceae
Genus: Oudemansiella
Species:
O. canarii
Binomial name
Oudemansiella canarii
(Jungh.) Höhn. (1909)
Synonyms [1]
  • Agaricus canariiJungh. (1838)
  • Amanitopsis canarii(Jungh.) Sacc. (1887)

Oudemansiella canarii is a species of gilled mushroom in the family Physalacriaceae. It is found in tropical America, southeast Asia, [2] and Australia, where it grows as a saprotroph on hardwood logs. [3]

Contents

Taxonomy and phylogeny

This species does have two synonyms which are Agaricus canarii and Amanitopsis canarii, respectfully. One of the first people who described it was Franz Wilhelm Junghuhn, who was a German-Dutch mycologist and botanist. Additionally, Franz Xaver Rudolf von Hohnel, who was an Austrian mycologist, that, along with Franz Junghuhn, discovered O. Canarii in 1838. O. canarii was first found by the previously mentioned mycologists in an expedition they both undertook in Australia.

The group that this species belongs to is Oudemansiella. The scientific classification of O. canarii is that it is in the fungal division Basidiomycota, the class Agaricomycetes, the order Agaricales, the family Physalacriaceae, and the genus Oudemansiella. Some relatives of O. canarii are O. africana, O. chiangaiae, O. jponica, O. platensis, and many more species in the genus Oudemansiella. O. canarii has not been explicitly used in a molecular phylogenetic study, however, one major study was used to study and identify O. canarii in one of its natural biomes of South America, or more specifically, Argentina.

Morphology

Oudemansiella canarii is a white, pilliate stipate mushroom that grows on fallen, decaying, and wet logs. Some of its determining features are its subdeccurent gill type and a piliate stipate stipe. This species of mushroom produces basidiospores. The cap of O. canarii is also has a determining feature of intact and ruptured warts on the cap.

The life cycle of O. canarii is similar to that of most Agaricales in the way that the primary mycelium produced by the germination of basidiospore is of short duration. It is haploid with septate hyphae. The cells contain oil globules, vacuoles and are short and uninucleate. As a result of hyphal fusions, the primary mycelium becomes binucleate usually without clamp connections rarely with clamp connections. The mycelium with binucleate cells is called secondary or dikaryotie mycelium. It is long-lived and abundant. It produces mushrooms year after year. The hyphae are long and branched. Commonly the hyphae interlace and twist to form thick, white hyphal cords called the rhizomorphs which bear the fruiting bodies.

Ecology

This species gets its energy through being a saprobe of dead or decaying wood. Some other organisms that O. canarii can be associated with certain types of bacteria, such as Spirochaeta cytophaga, due their ability to break down cellulose. This relationship would be described as a commensalitic relationship due to the fact that the S. cytophaga helps break down the cellulose in the decaying or rotting wood which O. canarii uses for its nutrition. As previously stated, O. canarii is a saprobe of wood in the way that it feeds off of dead or decaying wood. The habitat that O. canarii can be readily found would be in tropical forests or forest that contain types of hardwood such as evergreen. These types of trees are commonly found in Tropical USA, Central and South America and some parts of Australia. The geographic distribution of O. canarii is concentrated mostly around the tropical areas such as that as previously stated, of Argentina, tropical Central and North America, with a smaller density located in North Australia.

Overall biology and relevance for humans

Oudemansiella canarii is indeed economically important for humans because, like some agaric fungi, are edible. In a study by Turk Pharmacology, it was found that O. Canarii was found to have antioxidative properties. Additionally, the study yielded several bioactive and beneficial components such as “phenol, flavonoid, ascorbic acid, B-Carotene, and lycopene” (Acharya et al., 2019). These are all compounds that are beneficial to the human gastrointestinal tract. Throughout the range of O. canarii, it is found as a gastronomic delicacy. O. canarii has been well studied for its significant antimicrobial activities against C. albicans, C. glabrata, C. krusei, C. tropicalis and C. sphaerospermum (Acharya et al., 2019). The extract of O. canarii was shown to have antibacterial activity against the Gram positive bacterial pathogen, Staphylococcus aureus, but this cannot be explained by the presence of strobilurins, which are selective antifungal agents (Niego et al., 2021). Therefore, Oudemansielloid species could turn out to be a source of novel potent compounds with antimicrobial properties, once they have been studied more thoroughly.

In terms of cultural significance, there were no significant findings of O. canarii specifically (Acharya et al., 2019). Additionally, as previously stated, the significant use of O. canarii by humans is, along with many other agarics and Basidiomycota, is an edible delicacy. The previously mentioned study about the economical importance to humans also delved into the biochemistry and cellular biology of O. canarii (Acharya et al., 2019). It was found during the study that levels of acetonitrile and derivatives of phosphate were detected. Acetonitrile was found to be present in the processing of O. canarii and acetonitrile is beneficial to humans due to the fact that acetonitrile is a common ingredient in supplements that are used to break down saturated fatty acids and phosphates are used in the body to build and repair bones, help nerves, and help muscles to contract.

Related Research Articles

<span class="mw-page-title-main">Basidiomycota</span> Division of fungi

Basidiomycota is one of two large divisions that, together with the Ascomycota, constitute the subkingdom Dikarya within the kingdom Fungi. Members are known as basidiomycetes. More specifically, Basidiomycota includes these groups: agarics, puffballs, stinkhorns, bracket fungi, other polypores, jelly fungi, boletes, chanterelles, earth stars, smuts, bunts, rusts, mirror yeasts, and Cryptococcus, the human pathogenic yeast.

<span class="mw-page-title-main">Strophariaceae</span> Family of fungi

The Strophariaceae are a family of fungi in the order Agaricales. Under an older classification, the family covered 18 genera and 1316 species. The species of Strophariaceae have red-brown to dark brown spore prints, while the spores themselves are smooth and have an apical germ pore. These agarics are also characterized by having a cutis-type pileipellis. Ecologically, all species in this group are saprotrophs, growing on various kinds of decaying organic matter. The family was circumscribed in 1946 by mycologists Rolf Singer and Alexander H. Smith.

<span class="mw-page-title-main">Basidiospore</span> Reproductive structure of a fungus

A basidiospore is a reproductive spore produced by basidiomycete fungi, a grouping that includes mushrooms, shelf fungi, rusts, and smuts. Basidiospores typically each contain one haploid nucleus that is the product of meiosis, and they are produced by specialized fungal cells called basidia. Typically, four basidiospores develop on appendages from each basidium, of which two are of one strain and the other two of its opposite strain. In gills under a cap of one common species, there exist millions of basidia. Some gilled mushrooms in the order Agaricales have the ability to release billions of spores. The puffball fungus Calvatia gigantea has been calculated to produce about five trillion basidiospores. Most basidiospores are forcibly discharged, and are thus considered ballistospores. These spores serve as the main air dispersal units for the fungi. The spores are released during periods of high humidity and generally have a night-time or pre-dawn peak concentration in the atmosphere.

<span class="mw-page-title-main">Psathyrellaceae</span> Family of fungi

The Psathyrellaceae are a family of dark-spored agarics that generally have rather soft, fragile fruiting bodies, and are characterized by black, dark brown, rarely reddish, or even pastel-colored spore prints. About 50% of species produce fruiting bodies that dissolve into ink-like ooze when the spores are mature via autodigestion. Prior to phylogenetic research based upon DNA comparisons, most of the species that autodigested were classified as Coprinaceae, which contained all of the inky-cap mushrooms. However, the type species of Coprinus, Coprinus comatus, and a few other species, were found to be more closely related to Agaricaceae. The former genus Coprinus was split between two families, and the name "Coprinaceae" became a synonym of Agaricaceae in its 21st-century phylogenetic redefinition. Note that in the 19th and early 20th centuries the family name Agaricaceae had far broader application, while in the late 20th century it had a narrower application. The family name Psathyrellaceae is based on the former Coprinaceae subfamily name Psathyrelloideae. The type genus Psathyrella consists of species that produce fruiting bodies which do not liquify via autodigestion. Psathyrella remained a polyphyletic genus until it was split into several genera including 3 new ones in 2015. Lacrymaria is another genus that does not autodigest its fruiting bodies. It is characterized by rough basidiospores and lamellar edges that exude beads of clear liquid when in prime condition, hence the Latin reference, lacryma (tears).

<span class="mw-page-title-main">Mycelial cord</span> Structure produced by fungi

Mycelial cords are linear aggregations of parallel-oriented hyphae. The mature cords are composed of wide, empty vessel hyphae surrounded by narrower sheathing hyphae. Cords may look similar to plant roots, and also frequently have similar functions; hence they are also called rhizomorphs. As well as growing underground or on the surface of trees and other plants, some fungi make mycelial cords which hang in the air from vegetation.

<span class="mw-page-title-main">Physalacriaceae</span> Family of fungi

The Physalacriaceae are a family of fungi in the order Agaricales. Species in the family have a widespread distribution, ranging from the Arctic, (Rhizomarasmius), to the tropics, e.g. Gloiocephala, and from marine sites (Mycaureola) and fresh waters (Gloiocephala) to semiarid forests (Xerula).

<i>Oudemansiella australis</i> Species of fungus

Oudemansiella australis is a species of gilled mushroom in the family Physalacriaceae. It is found in Australasia, where it grows on rotting wood. It produces fruit bodies that are white, with caps up to 5.5 cm (2.2 in) in diameter, attached to short, thick stems.

<i>Rhodotus</i> Genus of fungus

Rhodotus is a genus in the fungus family Physalacriaceae. There are two species in the genus with the best known, Rhodotus palmatus, called the netted rhodotus, the rosy veincap, or the wrinkled peach. This uncommon species has a circumboreal distribution, and has been collected in eastern North America, northern Africa, Europe, and Asia; declining populations in Europe have led to its appearance in over half of the European fungal Red Lists of threatened species. Typically found growing on the stumps and logs of rotting hardwoods, mature specimens may usually be identified by the pinkish color and the distinctive ridged and veined surface of their rubbery caps; variations in the color and quantity of light received during development lead to variations in the size, shape, and cap color of fruit bodies.

<i>Oudemansiella</i> Genus of fungi

Oudemansiella is a genus of fungi in the family Physalacriaceae. The genus contains about 15 species that are widely distributed in tropical and temperate regions. Yang and colleagues revised the genus in a 2009 publication, describing several new species and several varieties. They classified species in the genus into four sections based on the structure of the cap cuticle: Oudemansiella, Mucidula, Dactylosporina, and Radicatae.

<i>Dendrocollybia</i> Genus of fungi in the family Tricholomataceae

Dendrocollybia is a fungal genus in the family Tricholomataceae of the order Agaricales. It is a monotypic genus, containing the single species Dendrocollybia racemosa, commonly known as the branched collybia or the branched shanklet. The somewhat rare species is found in the Northern Hemisphere, including the Pacific Northwest region of western North America, and Europe, where it is included in several Regional Red Lists. It usually grows on the decaying fruit bodies of other agarics—such as Lactarius and Russula—although the host mushrooms may be decayed to the point of being difficult to recognize.

<span class="mw-page-title-main">Entorrhizomycetes</span> Class of fungi

Entorrhizomycetes is the sole class in the phylum Entorrhizomycota, within the Fungi subkingdom Dikarya along with Basidiomycota and Ascomycota. It contains three genera and is a small group of teliosporic root parasites that form galls on plants in the Juncaceae (rush) and Cyperaceae (sedge) families. Prior to 2015 this phylum was placed under the subdivision Ustilaginomycotina. A 2015 study did a "comprehensive five-gene analyses" of Entorrhiza and concluded that the former class Entorrhizomycetes is possibly either a close sister group to the rest of Dikarya or Basidiomycota.

<i>Amanita australis</i> Species of fungus

Amanita australis is a species of fungus in the family Amanitaceae. It produces small- to medium-sized fruit bodies, with brown caps up to 9 centimetres in diameter covered with pyramidal warts. The gills on the underside of the cap are white, closely crowded together, and free from attachment to the stem. The stem, up to 9 cm long, has a ring and a bulbous base. The mushroom may be confused with another endemic New Zealand species, A. nothofagi, but can be distinguished by differences in microscopic characteristics.

<i>Ossicaulis</i> Genus of fungi

Ossicaulis is a ditypic genus of mushrooms in the family Lyophyllaceae.

<i>Volvariella surrecta</i> Species of fungus

Volvariella surrecta, commonly known as the piggyback rosegill, is an agaric fungus in the family Pluteaceae. Although rare, the species is widely distributed, having been reported from Asia, North America, Northern Africa, Europe, and New Zealand. The fungus grows as a parasite on the fruit bodies of other gilled mushrooms, usually Clitocybe nebularis. V. surrecta mushrooms have white or greyish silky-hairy caps up to 8 cm (3.1 in) in diameter, and white gills that turns pink in maturity. The stipe, also white, is up to 9 cm (3.5 in) long, and has a sack-like volva at its base.

<i>Aphroditeola</i> Genus of fungi

Aphroditeola is an agaric fungal monotypic genus that produces pink cantharelloid fruit bodies on coniferous forest floors. The lamellae are forked and typically the fruit bodies have a fragrant odor described as candy-like, cinnamon-like or pink bubble gum-like.

<i>Cantharocybe virosa</i> Species of fungus

Cantharocybe virosa is a member of the fungal family Hygrophoraceae that has been identified in India, Bangladesh and Thailand. It is an ectomycorrhizal fungus that is toxic for consumption and has no know uses in agriculture, horticulture or medicine. C. virosa is a gray to gray-brown fungus with white to yellowish-white gills that can be found in soil or on mud walls near Cocos nucifera.

<i>Phaeotremella frondosa</i> Species of fungus

Phaeotremella frondosa is a species of fungus in the family Phaeotremellaceae producing brownish, frondose, gelatinous basidiocarps. It is widespread in north temperate regions, and is parasitic on other species of fungi that grow on dead attached and recently fallen branches of broadleaf trees.

<i>Naematelia aurantia</i> Species of yellow, parasitic fungus

Naematelia aurantia is a species of fungus producing yellow, frondose, gelatinous basidiocarps. It is widespread in north temperate regions and is parasitic on another species of fungus that grows on dead attached and recently fallen branches of broadleaf trees. It is commonly called golden ear in North America.

<span class="mw-page-title-main">Glossary of mycology</span>

This glossary of mycology is a list of definitions of terms and concepts relevant to mycology, the study of fungi. Terms in common with other fields, if repeated here, generally focus on their mycology-specific meaning. Related terms can be found in glossary of biology and glossary of botany, among others. List of Latin and Greek words commonly used in systematic names and Botanical Latin may also be relevant, although some prefixes and suffixes very common in mycology are repeated here for clarity.

Phaeotremella fimbriata is a species of fungus in the family Phaeotremellaceae. It produces blackish, frondose, gelatinous basidiocarps and is parasitic on the mycelium of Stereum rugosum, a fungus that grows on dead attached and recently fallen branches of broad-leaved trees. It is widespread in northern Europe. Prior to 2017, the species was generally considered a synonym of Tremella foliacea, but this latter species is restricted to conifers. Phaeotremella frondosa is a similar-looking but paler, brown species on broad-leaved trees and occurs in North America as well as Europe.

References

  1. "GSD Species Synonymy: Oudemansiella canarii (Jungh.) Höhn". Species Fungorum. Retrieved 2014-03-01.
  2. Petersen RH, Hughes KW. (2010). The Xerula/Oudemansiella Complex (Agaricales). Nova Hedwigia. Vol. 137. Stuttgart: J. Cramer. pp. 275–9. ISBN   978-3-443-51059-6.
  3. Young AM. (2005). A Field Guide to the Fungi of Australia. UNSW Press. p. 163. ISBN   978-0868407425.