The p53 upregulated modulator of apoptosis (PUMA) also known as Bcl-2-binding component 3 (BBC3), is a pro-apoptotic protein, member of the Bcl-2 protein family. [5] [6] In humans, the Bcl-2-binding component 3 protein is encoded by the BBC3 gene. [5] [6] The expression of PUMA is regulated by the tumor suppressor p53. PUMA is involved in p53-dependent and -independent apoptosis induced by a variety of signals, and is regulated by transcription factors, not by post-translational modifications. After activation, PUMA interacts with antiapoptotic Bcl-2 family members, thus freeing Bax and/or Bak which are then able to signal apoptosis to the mitochondria. Following mitochondrial dysfunction, the caspase cascade is activated ultimately leading to cell death. [7]
The PUMA protein is part of the BH3-only subgroup of Bcl-2 family proteins. This group of proteins only share sequence similarity in the BH3 domain, which is required for interactions with Bcl-2-like proteins, such as Bcl-2 and Bcl-xL. [5] Structural analysis has shown that PUMA directly binds to antiapoptotic Bcl-2 family proteins via an amphiphatic α-helical structure which is formed by the BH3 domain. [8] The mitochondrial localization of PUMA is dictated by a hydrophobic domain on its C-terminal portion. [9] PUMA protein degradation is regulated by phosphorylation at a conserved serine residue at position 10.[31]
Biochemical studies have shown that PUMA interacts with antiapoptotic Bcl-2 family members such as Bcl-xL, Bcl-2, Mcl-1, [10] Bcl-w, and A1, inhibiting their interaction with the proapoptotic molecules, Bax and Bak. When the inhibition of these is lifted, they result in the translocation of Bax and activation of mitochondrial dysfunction resulting in release of mitochondrial apoptogenic proteins cytochrome c, SMAC, and apoptosis-inducing factor (AIF) leading to caspase activation and cell death. [5]
Because PUMA has high affinity for binding to Bcl-2 family members, another hypothesis is that PUMA directly activates Bax and/or Bak and through Bax multimerization triggers mitochondrial translocation and with it induces apoptosis. [11] [12] Various studies have shown though, that PUMA does not rely on direct interaction with Bax/Bak to induce apoptosis. [13] [14]
The majority of PUMA induced apoptosis occurs through activation of the tumor suppressor protein p53. p53 is activated by survival signals such as glucose deprivation [15] and increases expression levels of PUMA. This increase in PUMA levels induces apoptosis through mitochondrial dysfunction. p53, and with it PUMA, is activated due to DNA damage caused by a variety of genotoxic agents. Other agents that induce p53 dependent apoptosis are neurotoxins, [16] [17] proteasome inhibitors, [18] microtubule poisons, [19] and transcription inhibitors. [20] PUMA apoptosis may also be induced independently of p53 activation by other stimuli, such as oncogenic stress [21] [22] growth factor and/or cytokine withdrawal and kinase inhibition, [6] [23] [24] ER stress, altered redox status, [25] [26] ischemia, [11] [27] immune modulation, [28] [29] and infection. [7] [30]
PUMA levels are downregulated through the activation of caspase-3 and a protease inhibited by the serpase inhibitor N-tosyl-L-phenylalanine chloromethyl ketone, in response to signals such as the cytokine TGFβ, the death effector TRAIL or chemical drugs such as anisomycin. [31] PUMA protein is degraded in a proteasome dependent manner and its degradation is regulated by phosphorylation at a conserved serine residue at position 10. [32]
Several studies have shown that PUMA function is affected or absent in cancer cells. Additionally, many human tumors contain p53 mutations, [33] which results in no induction of PUMA, even after DNA damage induced through irradiation or chemotherapy drugs. [34] Other cancers, which exhibit overexpression of antiapoptotic Bcl-2 family proteins, counteract and overpower PUMA-induced apoptosis. [35] Even though PUMA function is compromised in most cancer cells, it does not appear that genetic inactivation of PUMA is a direct target of cancer. [36] [37] [38] Many cancers do exhibit p53 gene mutations, making gene therapies that target this gene [ clarification needed ] impossible, but an alternate pathway may be to focus on therapeutic to target PUMA and induce apoptosis in cancer cells. Animal studies have shown that PUMA does play a role in tumor suppression, but lack of PUMA activity alone does not translate to spontaneous formation of malignancies. [39] [40] [41] [42] [43] Inhibiting PUMA induced apoptosis may be an interesting target for reducing the side effects of cancer treatments, such as chemotherapy, which induce apoptosis in rapidly dividing healthy cells in addition to rapidly dividing cancer cells. [7]
PUMA can also function as an indicator of p53 mutations. Many cancers exhibit mutations in the p53 gene, but this mutation can only be detected through extensive DNA sequencing. Studies have shown that cells with p53 mutations have significantly lower levels of PUMA, making it a good candidate for a protein marker of p53 mutations, providing a simpler method for testing for p53 mutations. [44]
Therapeutic agents targeting PUMA for cancer patients are emerging. PUMA inducers target cancer or tumor cells, while PUMA inhibitors can be targeted to normal, healthy cells to help alleviate the undesired side effects of chemo and radiation therapy. [7]
Research has shown that increased PUMA expression with or without chemotherapy or irradiation is highly toxic to cancer cells, specifically lung, [45] head and neck, [46] esophagus, [47] melanoma, [48] malignant glioma, [49] gastric glands, [50] breast [51] and prostate. [52] In addition, studies have shown that PUMA adenovirus seems to induce apoptosis more so than p53 adenovirus. [45] [46] [47] This is beneficial in combating cancers that inhibit p53 activation and therefore indirectly decrease PUMA expression levels. [7]
Resveratrol, a plant-derived stilbenoid, is currently under investigation as a cancer treatment. Resveratrol acts to inhibit and decrease expression of antiapoptotic Bcl-2 family members while also increasing p53 expression. The combination of these two mechanisms leads to apoptosis via activation of PUMA, Noxa and other proapoptotic proteins, resulting in mitochondrial dysfunction. [53]
Other approaches focus on inhibiting antiapoptotic Bcl-2 family members just as PUMA does, allowing cells to undergo apoptosis in response to cancerous activity. Preclinical studies involving these inhibitors, also described as BH3 mimetics, have produced promising results. [7] [35] [54]
Irradiation therapy is dose-limited by undesired side effects in healthy tissue. PUMA has been shown to be active in inducing apoptosis in hematopoietic and intestinal tissue following γ-irradiation. [12] [55] Since inhibition of PUMA does not directly cause spontaneous malignancies, therapeutics to inhibit PUMA function in healthy tissue could lessen or eliminate the side effects of traditional cancer therapies. [7]
Apoptosis is a form of programmed cell death that occurs in multicellular organisms and in some eukaryotic, single-celled microorganisms such as yeast. Biochemical events lead to characteristic cell changes (morphology) and death. These changes include blebbing, cell shrinkage, nuclear fragmentation, chromatin condensation, DNA fragmentation, and mRNA decay. The average adult human loses between 50 and 70 billion cells each day due to apoptosis. For an average human child between eight and fourteen years old, each day the approximate loss is 20 to 30 billion cells.
Bcl-2, encoded in humans by the BCL2 gene, is the founding member of the Bcl-2 family of regulator proteins that regulate cell death (apoptosis), by either inhibiting (anti-apoptotic) or inducing (pro-apoptotic) apoptosis. It was the first apoptosis regulator identified in any organism.
Apoptosis regulator BAX, also known as bcl-2-like protein 4, is a protein that in humans is encoded by the BAX gene. BAX is a member of the Bcl-2 gene family. BCL2 family members form hetero- or homodimers and act as anti- or pro-apoptotic regulators that are involved in a wide variety of cellular activities. This protein forms a heterodimer with BCL2, and functions as an apoptotic activator. This protein is reported to interact with, and increase the opening of, the mitochondrial voltage-dependent anion channel (VDAC), which leads to the loss in membrane potential and the release of cytochrome c. The expression of this gene is regulated by the tumor suppressor P53 and has been shown to be involved in P53-mediated apoptosis.
Adenovirus E1B protein usually refers to one of two proteins transcribed from the E1B gene of the adenovirus: a 55kDa protein and a 19kDa protein. These two proteins are needed to block apoptosis in adenovirus-infected cells. E1B proteins work to prevent apoptosis that is induced by the small adenovirus E1A protein, which stabilizes p53, a tumor suppressor.
The BH3 interacting-domain death agonist, or BID, gene is a pro-apoptotic member of the Bcl-2 protein family. Bcl-2 family members share one or more of the four characteristic domains of homology entitled the Bcl-2 homology (BH) domains, and can form hetero- or homodimers. Bcl-2 proteins act as anti- or pro-apoptotic regulators that are involved in a wide variety of cellular activities.
Phorbol-12-myristate-13-acetate-induced protein 1 is a protein that in humans is encoded by the PMAIP1 gene, and is also known as Noxa.
Bcl-2 homologous antagonist/killer is a protein that in humans is encoded by the BAK1 gene on chromosome 6. The protein encoded by this gene belongs to the BCL2 protein family. BCL2 family members form oligomers or heterodimers and act as anti- or pro-apoptotic regulators that are involved in a wide variety of cellular activities. This protein localizes to mitochondria, and functions to induce apoptosis. It interacts with and accelerates the opening of the mitochondrial voltage-dependent anion channel, which leads to a loss in membrane potential and the release of cytochrome c. This protein also interacts with the tumor suppressor P53 after exposure to cell stress.
The BCL2 associated agonist of cell death (BAD) protein is a pro-apoptotic member of the Bcl-2 gene family which is involved in initiating apoptosis. BAD is a member of the BH3-only family, a subfamily of the Bcl-2 family. It does not contain a C-terminal transmembrane domain for outer mitochondrial membrane and nuclear envelope targeting, unlike most other members of the Bcl-2 family. After activation, it is able to form a heterodimer with anti-apoptotic proteins and prevent them from stopping apoptosis.
B-cell lymphoma-extra large (Bcl-xL), encoded by the BCL2-like 1 gene, is a transmembrane molecule in the mitochondria. It is a member of the Bcl-2 family of proteins, and acts as an anti-apoptotic protein by preventing the release of mitochondrial contents such as cytochrome c, which leads to caspase activation and ultimately, programmed cell death.
Bcl-2-like protein 1 is a protein encoded in humans by the BCL2L1 gene. Through alternative splicing, the gene encodes both of the human proteins Bcl-xL and Bcl-xS.
Induced myeloid leukemia cell differentiation protein Mcl-1 is a protein that in humans is encoded by the MCL1 gene.
BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 is a protein found in humans that is encoded by the BNIP3 gene.
Bcl-2-like protein 11, commonly called BIM, is a protein that in humans is encoded by the BCL2L11 gene.
Diablo homolog (DIABLO) is a mitochondrial protein that in humans is encoded by the DIABLO gene on chromosome 12. DIABLO is also referred to as second mitochondria-derived activator of caspases or SMAC. This protein binds inhibitor of apoptosis proteins (IAPs), thus freeing caspases to activate apoptosis. Due to its proapoptotic function, SMAC is implicated in a broad spectrum of tumors, and small molecule SMAC mimetics have been developed to enhance current cancer treatments.
Bcl-2-interacting killer is a protein that in humans is encoded by the BIK gene.
Bcl-2-like protein 2 is a 193-amino acid protein that in humans is encoded by the BCL2L2 gene on chromosome 14. It was originally discovered by Leonie Gibson, Suzanne Cory and colleagues at the Walter and Eliza Hall Institute of Medical Research, who called it Bcl-w.
Activator of apoptosis harakiri is a protein that in humans is encoded by the HRK gene.
Bcl-2-modifying factor is a protein that in humans is encoded by the BMF gene.
Bok is a protein-coding gene of the Bcl-2 family that is found in many invertebrates and vertebrates. It induces apoptosis, a special type of cell death. Currently, the precise function of Bok in this process is unknown.
The Bcl-2 family consists of a number of evolutionarily-conserved proteins that share Bcl-2 homology (BH) domains. The Bcl-2 family is most notable for their regulation of apoptosis, a form of programmed cell death, at the mitochondrion. The Bcl-2 family proteins consists of members that either promote or inhibit apoptosis, and control apoptosis by governing mitochondrial outer membrane permeabilization (MOMP), which is a key step in the intrinsic pathway of apoptosis. A total of 25 genes in the Bcl-2 family were identified by 2008.