Paleo-Tethys Ocean

Last updated
Location of the Paleo-Tethys Ocean circa ~250 million years ago Paleotethys.jpg
Location of the Paleo-Tethys Ocean circa ~250 million years ago
Location of the Paleo-Tethys Ocean circa 380 million years ago 380 Ma plate tectonic reconstruction.png
Location of the Paleo-Tethys Ocean circa 380 million years ago

The Paleo-Tethys or Palaeo-Tethys Ocean was an ocean located along the northern margin of the paleocontinent Gondwana that started to open during the Middle Cambrian, grew throughout the Paleozoic, and finally closed during the Late Triassic; existing for about 400 million years. [2]

Contents

Paleo-Tethys was a precursor to the Tethys Ocean (also called the Neo-Tethys) which was located between Gondwana and the Hunic terranes (continental fragments that broke-off Gondwana and moved north). It opened as the Proto-Tethys Ocean subducted under these terranes and closed as the Cimmerian terranes (that also broke-off Gondwana and moved north) gave way to the Tethys Ocean. [3] Confusingly, the Neo-Tethys is sometimes defined as the ocean south of a hypothesised mid-ocean ridge separating Greater India from Asia, in which case the ocean between Cimmeria and this hypothesised ridge is called the Meso-Tethys, i.e. the "Middle-Tethys". [4]

The so-called Hunic terranes are divided into the European Hunic (today the crust under parts of Europe – called Armorica – and Iberia) and Asiatic Hunic (today the crust of parts of southern Asia). A large transform fault separated the two terranes.

The role the Paleo-Tethys played in the supercontinent cycle, and especially the break-up of Pangaea, is unresolved. Some geologists argue that the opening of the North Atlantic was triggered by the subduction of Panthalassa under the western margins of the Americas while other argue that the closure of the Paleo-Tethys and Tethys resulted in the break-up. In the first scenario, mantle plumes caused the opening of the Atlantic and the break-up of Pangaea and the closure of the Tethyan domain was one of the consequences of this process; in the other scenario, the longitudinal forces that closed the Tethyan domain were transmitted latitudinally in what is today the Mediterranean region, resulting in the initial opening of the Atlantic. [5]

History

Image of Paleo-Tethys Ocean, before the Cimmerian Plate moved north, which made the ocean close, the Paleo-Tethys Ocean closed off about 180 mya. ~290 mya (Early Permian). 290 global.png
Image of Paleo-Tethys Ocean, before the Cimmerian Plate moved north, which made the ocean close, the Paleo-Tethys Ocean closed off about 180 mya. ~290 mya (Early Permian).
The Cimmerian plate starts to move northward, closing the Paleo-Tethys Ocean, while the Tethys Ocean begins to open from the south. ~249 mya (Permian-Triassic boundary). 249 global.png
The Cimmerian plate starts to move northward, closing the Paleo-Tethys Ocean, while the Tethys Ocean begins to open from the south. ~249 mya (Permian-Triassic boundary).

The Paleo-Tethys Ocean began to form when back-arc spreading separated the European Hunic terranes from Gondwana in the late Ordovician, to begin moving toward Euramerica (also known as the Old Red Sandstone Continent) in the north. In the process, the plate under the Rheic Ocean between Euramerica and the European Hunic terranes subducted and rifts in this plate resulted in the formation of a small Rhenhercynian Ocean which lasted until Late Carboniferous time. [6] [7]

In the Early Devonian, the eastern part of Paleo-Tethys opened up, when the Asiatic Hunic terranes, including the North and South China microcontinents, moved northward. [7] [8]

These events caused Proto-Tethys Ocean to shrink until the Late Carboniferous, when the Chinese blocks collided with Siberia. [7] In the Early Carboniferous however, a subduction zone developed south of the European Hunic terranes consuming Paleo-Tethys oceanic crust. [9] Gondwana started moving north, and in the process the western part of the Paleo-Tethys would close. [7] [10]

In the Carboniferous continental collision took place between the Old Red Sandstone Continent and the European Hunic terrane, in North America this is called the Alleghenian orogeny, in Europe the Variscan orogeny. The Rheic Ocean had completely disappeared, and the western Paleo-Tethys was closing.

By the Late Permian, the small elongated Cimmerian plate (today's crust of Turkey, Iran, Tibet and parts of South-East Asia) broke away from Gondwana (now part of Pangaea). South of the Cimmerian continent a new ocean, the Tethys Ocean, was created. By the Late Triassic, all that was left of the Paleo-Tethys Ocean was a narrow seaway.

In the Early Jurassic epoch, as part of the Alpine Orogeny, the oceanic crust of the Paleo-Tethys subducted under the Cimmerian plate, closing the ocean from west to east. A last remnant of Paleo-Tethys Ocean might be an oceanic crust under the Black Sea. (Anatolia, to the sea's south, is a part of the original Cimmerian continent that formed the southern boundary of the Paleo-Tethys.)

The Paleo-Tethys Ocean sat where the Indian Ocean and Southern Asia are now located. The Equator ran the length of the sea, giving it a tropical climate. The shores and islands probably supported dense coal forests.

See also

Related Research Articles

<span class="mw-page-title-main">Geology of the Alps</span> The formation and structure of the European Alps

The Alps form part of a Cenozoic orogenic belt of mountain chains, called the Alpide belt, that stretches through southern Europe and Asia from the Atlantic all the way to the Himalayas. This belt of mountain chains was formed during the Alpine orogeny. A gap in these mountain chains in central Europe separates the Alps from the Carpathians to the east. Orogeny took place continuously and tectonic subsidence has produced the gaps in between.

<span class="mw-page-title-main">Laurasia</span> Northern landmass that formed part of the Pangaea supercontinent

Laurasia was the more northern of two large landmasses that formed part of the Pangaea supercontinent from around 335 to 175 million years ago (Mya), the other being Gondwana. It separated from Gondwana 215 to 175 Mya during the breakup of Pangaea, drifting farther north after the split and finally broke apart with the opening of the North Atlantic Ocean c. 56 Mya. The name is a portmanteau of Laurentia and Asia.

<span class="mw-page-title-main">Tethys Ocean</span> Prehistoric ocean between Gondwana and Laurasia

The Tethys OceanTEETH-iss, TETH-, also called the Tethys Sea or the Neo-Tethys, was a prehistoric ocean during much of the Mesozoic Era and early-mid Cenozoic Era. It was the predecessor to the modern Indian Ocean, the Mediterranean Sea, and the Eurasian inland marine basins.

<span class="mw-page-title-main">Panthalassa</span> Prehistoric superocean that surrounded Pangaea

Panthalassa, also known as the Panthalassic Ocean or Panthalassan Ocean, was the vast superocean that encompassed planet Earth and surrounded the supercontinent Pangaea, the latest in a series of supercontinents in the history of Earth. During the Paleozoic–Mesozoic transition, the ocean occupied almost 70% of Earth's surface, with the supercontinent Pangaea taking up less than half. The original, ancient ocean floor has now completely disappeared because of the continuous subduction along the continental margins on its circumference. Panthalassa is also referred to as the Paleo-Pacific or Proto-Pacific because the Pacific Ocean is a direct continuation of Panthalassa.

<span class="mw-page-title-main">Pannotia</span> Hypothesized Neoproterozoic supercontinent

Pannotia, also known as the Vendian supercontinent, Greater Gondwana, and the Pan-African supercontinent, was a relatively short-lived Neoproterozoic supercontinent that formed at the end of the Precambrian during the Pan-African orogeny, during the Cryogenian period and broke apart 560 Ma with the opening of the Iapetus Ocean, in the late Ediacaran and early Cambrian. Pannotia formed when Laurentia was located adjacent to the two major South American cratons, Amazonia and Río de la Plata. The opening of the Iapetus Ocean separated Laurentia from Baltica, Amazonia, and Río de la Plata. A 2022 paper argues that Pannotia never fully existed, reinterpreting the geochronological evidence: "the supposed landmass had begun to break up well before it was fully assembled". However, the assembly of the next supercontinent Pangaea is well established.

<span class="mw-page-title-main">Avalonia</span> Microcontinent in the Paleozoic era

Avalonia was a microcontinent in the Paleozoic era. Crustal fragments of this former microcontinent underlie south-west Great Britain, southern Ireland, and the eastern coast of North America. It is the source of many of the older rocks of Western Europe, Atlantic Canada, and parts of the coastal United States. Avalonia is named for the Avalon Peninsula in Newfoundland.

<span class="mw-page-title-main">Variscan orogeny</span> Collision of tectonic plates resulting in the creation of mountains

The Variscan or Hercynianorogeny was a geologic mountain-building event caused by Late Paleozoic continental collision between Euramerica (Laurussia) and Gondwana to form the supercontinent of Pangaea.

The Rheic Ocean was an ocean which separated two major palaeocontinents, Gondwana and Laurussia (Laurentia-Baltica-Avalonia). One of the principal oceans of the Palaeozoic, its sutures today stretch 10,000 km (6,200 mi) from Mexico to Turkey and its closure resulted in the assembly of the supercontinent Pangaea and the formation of the Variscan–Alleghenian–Ouachita orogenies.

The Proto-Tethys or Theic Ocean was an ancient ocean that existed from the latest Ediacaran to the Carboniferous.

<span class="mw-page-title-main">Cimmeria (continent)</span> Ancient string of microcontinents that rifted from Gondwana

Cimmeria was an ancient continent, or, rather, a string of microcontinents or terranes, that rifted from Gondwana in the Southern Hemisphere and was accreted to Eurasia in the Northern Hemisphere. It consisted of parts of present-day Turkey, Iran, Afghanistan, Pakistan, Tibet, China, Myanmar, Thailand, and Malaysia. Cimmeria rifted from the Gondwanan shores of the Paleo-Tethys Ocean during the Early Permian and as the Neo-Tethys Ocean opened behind it, during the Permian, the Paleo-Tethys closed in front of it. Because the different chunks of Cimmeria drifted northward at different rates, a Meso-Tethys Ocean formed between the different fragments during the Cisuralian. Cimmeria rifted off Gondwana from east to west, from Australia to the eastern Mediterranean. It stretched across several latitudes and spanned a wide range of climatic zones.

<span class="mw-page-title-main">South Aegean Volcanic Arc</span> Chain of volcanic islands in the South Aegean Sea

The South Aegean Volcanic Arc is a volcanic arc in the South Aegean Sea formed by plate tectonics. The prior cause was the subduction of the African Plate beneath the Eurasian Plate, raising the Aegean arc across what is now the North Aegean Sea. It was not yet the sea, nor an arc, or at least not the one it is today, nor was there a chain of volcanoes. In the Holocene, the process of back-arc extension began, probably stimulated by pressure from the Arabian Plate compressing the region behind the arc. The extension deformed the region into its current configuration. First, the arc moved to the south and assumed its arcuate configuration. Second, the Aegean Sea opened behind the arc because the crust was thinned and weakened there. Third, magma broke through the thinned crust to form a second arc composed of a volcanic chain. And finally, the Aegean Sea Plate broke away from Eurasia in the new fault zone to the north.

<span class="mw-page-title-main">Gondwana</span> Neoproterozoic to Cretaceous landmass

Gondwana was a large landmass, sometimes referred to as a supercontinent. It was formed by the accretion of several cratons, beginning c. 800 to 650Ma with the East African Orogeny, the collision of India and Madagascar with East Africa, and culminating in c. 600 to 530 Ma with the overlapping Brasiliano and Kuunga orogenies, the collision of South America with Africa, and the addition of Australia and Antarctica, respectively. Eventually, Gondwana became the largest piece of continental crust of the Palaeozoic Era, covering an area of some 100,000,000 km2 (39,000,000 sq mi), about one-fifth of the Earth's surface. It fused with Euramerica during the Carboniferous to form Pangea. It began to separate from northern Pangea (Laurasia) during the Triassic, and started to fragment during the Early Jurassic. The final stages of break-up, involving the separation of Antarctica from South America and Australia, occurred during the Paleogene (from around 66 to 23 million years ago. Gondwana was not considered a supercontinent by the earliest definition, since the landmasses of Baltica, Laurentia, and Siberia were separated from it. To differentiate it from the Indian region of the same name, it is also commonly called Gondwanaland.

<span class="mw-page-title-main">Pangaea</span> Supercontinent from the late Paleozoic to early Mesozoic eras

Pangaea or Pangea was a supercontinent that existed during the late Paleozoic and early Mesozoic eras. It assembled from the earlier continental units of Gondwana, Euramerica and Siberia during the Carboniferous approximately 335 million years ago, and began to break apart about 200 million years ago, at the end of the Triassic and beginning of the Jurassic. In contrast to the present Earth and its distribution of continental mass, Pangaea was C-shaped, with the bulk of its mass stretching between Earth's northern and southern polar regions and surrounded by the superocean Panthalassa and the Paleo-Tethys and subsequent Tethys Oceans. Pangaea is the most recent supercontinent to have existed and the first to be reconstructed by geologists.

<span class="mw-page-title-main">Rhenohercynian Zone</span> Fold belt of west and central Europe, formed during the Hercynian orogeny

The Rhenohercynian Zone or Rheno-Hercynian zone in structural geology describes a fold belt of west and central Europe, formed during the Hercynian orogeny. The zone consists of folded and thrust Devonian and early Carboniferous sedimentary rocks that were deposited in a back-arc basin along the southern margin of the then existing paleocontinent Laurussia.

This is a list of articles related to plate tectonics and tectonic plates.

<span class="mw-page-title-main">Armorican terrane</span> Microcontinent or group of continental fragments rifted away from Gondwana

The Armorican terrane, Armorican terrane assemblage, or simply Armorica, was a microcontinent or group of continental fragments that rifted away from Gondwana towards the end of the Silurian and collided with Laurussia towards the end of the Carboniferous during the Variscan orogeny. The name is taken from Armorica, the Gaulish name for a large part of northwestern France that includes Brittany, as this matches closely to the present location of the rock units that form the main part of this terrane.

<span class="mw-page-title-main">Lhasa terrane</span> Fragment of crustal material that forms present-day southern Tibet

The Lhasa terrane is a terrane, or fragment of crustal material, sutured to the Eurasian Plate during the Cretaceous that forms present-day southern Tibet. It takes its name from the city of Lhasa in the Tibet Autonomous Region, China. The northern part may have originated in the East African Orogeny, while the southern part appears to have once been part of Australia. The two parts joined, were later attached to Asia, and then were impacted by the collision of the Indian Plate that formed the Himalayas.

The Hunic superterrane is a terrane that is now attached to Europe and Asia. At the end of the Ordovician or beginning of the Silurian it separated from Gondwana and joined Laurasia at the beginning of the Carboniferous, at the time of the Variscan orogeny. Rather than being a single block, there were apparently two groups of blocks, the European Hunic terranes and the Asian Hunic terranes.

The Hellenic orogeny is a collective noun referring to multiple mountain building events that shaped the topography of the southern margin of Eurasia into what is now Greece, the Aegean Sea and western Turkey, beginning in the Jurassic. Prior to then the supercontinent, Pangaea, had divided along a divergent boundary into two continents, Gondwana land and Laurasia, separated by a primordial ocean, Paleo-Tethys Ocean. As the two continents continued to break up, Gondwana, pushed by divergent boundaries developing elsewhere, began to drift to the north, closing the sea. As it went it split off a number of smaller land masses, terranes, which preceded it to the north. The Hellenic orogeny is the story of the collision first of these terranes and then of Gondwana, reduced to Africa, with Eurasia, and the closing of Tethys to the Mediterranean. The process has been ongoing since the Jurassic and continues today.

References

Notes

  1. Stampfli & Borel 2000 - Tethyan Plate Tectonic working group of the Institut of Mineralogy and Petrography, University of Lausanne
  2. Zhai et al. 2015 , Abstract
  3. Muttoni et al. 2009 , Fig. 2, p. 19
  4. Müller & Seton 2015 , p. 5
  5. Keppie 2015a , Abstract; Keppie 2015b , Abstract
  6. Stampfli, von Raumer & Borel 2002 , Middle Devonian Phase, p. 272
  7. 1 2 3 4 Stampfli, von Raumer & Borel 2002 , Fig. 3, pp. 268–629
  8. Stampfli, von Raumer & Borel 2002 , Hun Superterrane, p. 267
  9. Stampfli, von Raumer & Borel 2002 , European Hunic active margin in Armorica (sensu lato), p. 273
  10. Stampfli, von Raumer & Borel 2002 , Fig. 4e, p. 270

Sources