This article needs additional citations for verification .(May 2008) |
A parametric oscillator is a driven harmonic oscillator in which the oscillations are driven by varying some parameters of the system at some frequencies, typically different from the natural frequency of the oscillator. A simple example of a parametric oscillator is a child pumping a playground swing by periodically standing and squatting to increase the size of the swing's oscillations. [1] [2] [3] The child's motions vary the moment of inertia of the swing as a pendulum. The "pump" motions of the child must be at twice the frequency of the swing's oscillations. Examples of parameters that may be varied are the oscillator's resonance frequency and damping .
Parametric oscillators are used in several areas of physics. The classical varactor parametric oscillator consists of a semiconductor varactor diode connected to a resonant circuit or cavity resonator. It is driven by varying the diode's capacitance by applying a varying bias voltage. The circuit that varies the diode's capacitance is called the "pump" or "driver". In microwave electronics, waveguide/YAG-based parametric oscillators operate in the same fashion. Another important example is the optical parametric oscillator, which converts an input laser light wave into two output waves of lower frequency ().
When operated at pump levels below oscillation, the parametric oscillator can amplify a signal, forming a parametric amplifier (paramp). Varactor parametric amplifiers were developed as low-noise amplifiers in the radio and microwave frequency range. The advantage of a parametric amplifier is that it has much lower noise than an amplifier based on a gain device like a transistor or vacuum tube. This is because in the parametric amplifier a reactance is varied instead of a (noise-producing) resistance. They are used in very low noise radio receivers in radio telescopes and spacecraft communication antennas. [4]
Parametric resonance occurs in a mechanical system when a system is parametrically excited and oscillates at one of its resonant frequencies. Parametric excitation differs from forcing since the action appears as a time varying modification on a system parameter.
Parametric oscillations were first noticed in mechanics. Michael Faraday (1831) was the first to notice oscillations of one frequency being excited by forces of double the frequency, in the crispations (ruffled surface waves) observed in a wine glass excited to "sing". [5] Franz Melde (1860) generated parametric oscillations in a string by employing a tuning fork to periodically vary the tension at twice the resonance frequency of the string. [6] Parametric oscillation was first treated as a general phenomenon by Rayleigh (1883,1887). [7] [8] [9]
One of the first to apply the concept to electric circuits was George Francis FitzGerald, who in 1892 tried to excite oscillations in an LC circuit by pumping it with a varying inductance provided by a dynamo. [10] [11] Parametric amplifiers (paramps) were first used in 1913-1915 for radio telephony from Berlin to Vienna and Moscow, and were predicted to have a useful future (Ernst Alexanderson, 1916). [12] These early parametric amplifiers used the nonlinearity of an iron-core inductor, so they could only function at low frequencies.
In 1948 Aldert van der Ziel pointed out a major advantage of the parametric amplifier: because it used a variable reactance instead of a resistance for amplification it had inherently low noise. [13] A parametric amplifier used as the front end of a radio receiver could amplify a weak signal while introducing very little noise. In 1952 Harrison Rowe at Bell Labs extended some 1934 mathematical work on pumped oscillations by Jack Manley and published the modern mathematical theory of parametric oscillations, the Manley-Rowe relations. [13]
The varactor diode invented in 1956 had a nonlinear capacitance that was usable into microwave frequencies. The varactor parametric amplifier was developed by Marion Hines in 1956 at Western Electric. [13] At the time it was invented microwaves were just being exploited, and the varactor amplifier was the first semiconductor amplifier at microwave frequencies. [13] It was applied to low noise radio receivers in many areas, and has been widely used in radio telescopes, satellite ground stations, and long-range radar. It is the main type of parametric amplifier used today. Since that time parametric amplifiers have been built with other nonlinear active devices such as Josephson junctions.
The technique has been extended to optical frequencies in optical parametric oscillators and amplifiers which use nonlinear crystals as the active element.
A parametric oscillator is a harmonic oscillator whose physical properties vary with time. The equation of such an oscillator is
This equation is linear in . By assumption, the parameters and depend only on time and do not depend on the state of the oscillator. In general, and/or are assumed to vary periodically, with the same period .
If the parameters vary at roughly twice the natural frequency of the oscillator (defined below), the oscillator phase-locks to the parametric variation and absorbs energy at a rate proportional to the energy it already has. Without a compensating energy-loss mechanism provided by , the oscillation amplitude grows exponentially. (This phenomenon is called parametric excitation, parametric resonance or parametric pumping.) However, if the initial amplitude is zero, it will remain so; this distinguishes it from the non-parametric resonance of driven simple harmonic oscillators, in which the amplitude grows linearly in time regardless of the initial state.
A familiar experience of both parametric and driven oscillation is playing on a swing. [1] [2] [3] Rocking back and forth pumps the swing as a driven harmonic oscillator, but once moving, the swing can also be parametrically driven by alternately standing and squatting at key points in the swing arc. This changes moment of inertia of the swing and hence the resonance frequency, and children can quickly reach large amplitudes provided that they have some amplitude to start with (e.g., get a push). Standing and squatting at rest, however, leads nowhere.
We begin by making a change of variable
where is the time integral of the damping coefficient
This change of variable eliminates the damping term in the differential equation, reducing it to
where the transformed frequency is defined as
In general, the variations in damping and frequency are relatively small perturbations
where and are constants, namely, the time-averaged oscillator frequency and damping, respectively. The transformed frequency can then be written in a similar way as
where is the natural frequency of the damped harmonic oscillator
and
Thus, our transformed equation can be written as
The independent variations and in the oscillator damping and resonance frequency, respectively, can be combined into a single pumping function . The converse conclusion is that any form of parametric excitation can be accomplished by varying either the resonance frequency or the damping, or both.
Let us assume that is sinusoidal with a frequency approximately twice the natural frequency of the oscillator:
where the pumping frequency but need not equal exactly. Using the method of variation of parameters, the solution to our transformed equation may be written as
where the rapidly varying components, and have been factored out to isolate the slowly varying amplitudes and
We proceed by substituting this solution into the differential equation and considering that both the coefficients in front of and must be zero to satisfy the differential equation identically. We also omit the second derivatives of and on the grounds that and are slowly varying, as well as omit sinusoidal terms not near the natural frequency, as they do not contribute significantly to resonance. The result is the following pair of coupled differential equations:
This system of linear differential equations with constant coefficients can be decoupled and solved by eigenvalue/eigenvector methods. This yields the solution
where and are the eigenvalues of the matrix
and are corresponding eigenvectors, and and are arbitrary constants.
The eigenvalues are given by
If we write the difference between and as and replace with everywhere where the difference is not important, we get
If then the eigenvalues are real and exactly one is positive, which leads to exponential growth for and This is the condition for parametric resonance, with the growth rate for given by the positive eigenvalue
Note, however, that this growth rate corresponds to the amplitude of the transformed variable whereas the amplitude of the original, untransformed variable can either grow or decay depending on whether is an increasing or decreasing function of time,
The above derivation may seem like a mathematical sleight-of-hand, so it may be helpful to give an intuitive derivation. The equation may be written in the form
which represents a simple harmonic oscillator (or, alternatively, a bandpass filter) being driven by a signal that is proportional to its response .
Assume that already has an oscillation at frequency and that the pumping has double the frequency and a small amplitude . Applying a trigonometric identity for products of sinusoids, their product produces two driving signals, one at frequency and the other at frequency .
Being off-resonance, the signal is attenuated and can be neglected initially. By contrast, the signal is on resonance, serves to amplify , and is proportional to the amplitude . Hence, the amplitude of grows exponentially unless it is initially zero.
Expressed in Fourier space, the multiplication is a convolution of their Fourier transforms and . The positive feedback arises because the component of converts the component of into a driving signal at , and vice versa (reverse the signs). This explains why the pumping frequency must be near , twice the natural frequency of the oscillator. Pumping at a grossly different frequency would not couple (i.e., provide mutual positive feedback) between the and components of .
Parametric resonance is the parametrical resonance phenomenon of mechanical perturbation and oscillation at certain frequencies (and the associated harmonics). This effect is different from regular resonance because it exhibits the instability phenomenon.
Parametric resonance occurs in a mechanical system when a system is parametrically excited and oscillates at one of its resonant frequencies. Parametric excitation differs from forcing since the action appears as a time varying modification on a system parameter. The classical example of parametric resonance is that of the vertically forced pendulum. Parametric resonance takes place when the external excitation frequency equals twice the natural frequency of the system divided by a positive integer . For a parametric excitation with small amplitude in the absence of friction, the bandwidth of the resonance is to leading order . [14] The effect of friction is to introduce a finite threshold for the amplitude of parametric excitation to result in an instability. [15]
For small amplitudes and by linearising, the stability of the periodic solution is given by Mathieu's equation:
where is some perturbation from the periodic solution. Here the term acts as an ‘energy’ source and is said to parametrically excite the system. The Mathieu equation describes many other physical systems to a sinusoidal parametric excitation such as an LC Circuit where the capacitor plates move sinusoidally.
Autoparametric resonance happens in a system with two coupled oscillators, such that the vibrations of one act as parametric resonance on the second. The zero point of the second oscillator becomes unstable, and thus it starts oscillating. [16] [17]
A parametric amplifier is implemented as a mixer. The mixer's gain shows up in the output as amplifier gain. The input weak signal is mixed with a strong local oscillator signal, and the resultant strong output is used in the ensuing receiver stages.
Parametric amplifiers also operate by changing a parameter of the amplifier. Intuitively, this can be understood as follows, for a variable capacitor-based amplifier. Charge in a capacitor obeys: ,
therefore the voltage across is .
Knowing the above, if a capacitor is charged until its voltage equals the sampled voltage of an incoming weak signal, and if the capacitor's capacitance is then reduced (say, by manually moving the plates further apart), then the voltage across the capacitor will increase. In this way, the voltage of the weak signal is amplified.
If the capacitor is a varicap diode, then "moving the plates" can be done simply by applying time-varying DC voltage to the varicap diode. This driving voltage usually comes from another oscillator—sometimes called a "pump".
The resulting output signal contains frequencies that are the sum and difference of the input signal (f1) and the pump signal (f2): (f1 + f2) and (f1 − f2).
A practical parametric oscillator needs the following connections: one for the "common" or "ground", one to feed the pump, one to retrieve the output, and maybe a fourth one for biasing. A parametric amplifier needs a fifth port to input the signal being amplified. Since a varactor diode has only two connections, it can only be a part of an LC network with four eigenvectors with nodes at the connections. This can be implemented as a transimpedance amplifier, a traveling-wave amplifier or by means of a circulator.
The parametric oscillator equation can be extended by adding an external driving force :
We assume that the damping is sufficiently strong that, in the absence of the driving force , the amplitude of the parametric oscillations does not diverge, i.e., that . In this situation, the parametric pumping acts to lower the effective damping in the system. For illustration, let the damping be constant and assume that the external driving force is at the mean resonance frequency , i.e., . The equation becomes
whose solution is approximately
As approaches the threshold , the amplitude diverges. When , the system enters parametric resonance and the amplitude begins to grow exponentially, even in the absence of a driving force .
If the parameters of any second-order linear differential equation are varied periodically, Floquet analysis shows that the solutions must vary either sinusoidally or exponentially.
The equation above with periodically varying is an example of a Hill equation. If is a simple sinusoid, the equation is called a Mathieu equation.
In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force F proportional to the displacement x: where k is a positive constant.
Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value or between two or more different states. Familiar examples of oscillation include a swinging pendulum and alternating current. Oscillations can be used in physics to approximate complex interactions, such as those between atoms.
In mechanics and physics, simple harmonic motion is a special type of periodic motion an object experiences by means of a restoring force whose magnitude is directly proportional to the distance of the object from an equilibrium position and acts towards the equilibrium position. It results in an oscillation that is described by a sinusoid which continues indefinitely.
In physics, resonance refers to a wide class of phenomena that arise as a result of matching temporal or spatial periods of oscillatory objects. For an oscillatory dynamical system driven by a time-varying external force, resonance occurs when the frequency of the external force coincides with the natural frequency of the system. Resonance can occur in various systems, such as mechanical, electrical, or acoustic systems, and it is desirable in certain applications, such as musical instruments or radio receivers. Resonance can also be undesirable, leading to excessive vibrations or even structural failure in some cases.
In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect to time, and the oscillations at different points throughout the wave are in phase. The locations at which the absolute value of the amplitude is minimum are called nodes, and the locations where the absolute value of the amplitude is maximum are called antinodes.
In physics and engineering, the quality factor or Q factor is a dimensionless parameter that describes how underdamped an oscillator or resonator is. It is defined as the ratio of the initial energy stored in the resonator to the energy lost in one radian of the cycle of oscillation. Q factor is alternatively defined as the ratio of a resonator's centre frequency to its bandwidth when subject to an oscillating driving force. These two definitions give numerically similar, but not identical, results. Higher Q indicates a lower rate of energy loss and the oscillations die out more slowly. A pendulum suspended from a high-quality bearing, oscillating in air, has a high Q, while a pendulum immersed in oil has a low one. Resonators with high quality factors have low damping, so that they ring or vibrate longer.
An LC circuit, also called a resonant circuit, tank circuit, or tuned circuit, is an electric circuit consisting of an inductor, represented by the letter L, and a capacitor, represented by the letter C, connected together. The circuit can act as an electrical resonator, an electrical analogue of a tuning fork, storing energy oscillating at the circuit's resonant frequency.
In physical systems, damping is the loss of energy of an oscillating system by dissipation. Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. Examples of damping include viscous damping in a fluid, surface friction, radiation, resistance in electronic oscillators, and absorption and scattering of light in optical oscillators. Damping not based on energy loss can be important in other oscillating systems such as those that occur in biological systems and bikes. Damping is not to be confused with friction, which is a type of dissipative force acting on a system. Friction can cause or be a factor of damping.
Quantum noise is noise arising from the indeterminate state of matter in accordance with fundamental principles of quantum mechanics, specifically the uncertainty principle and via zero-point energy fluctuations. Quantum noise is due to the apparently discrete nature of the small quantum constituents such as electrons, as well as the discrete nature of quantum effects, such as photocurrents.
The Kuramoto model, first proposed by Yoshiki Kuramoto, is a mathematical model used in describing synchronization. More specifically, it is a model for the behavior of a large set of coupled oscillators. Its formulation was motivated by the behavior of systems of chemical and biological oscillators, and it has found widespread applications in areas such as neuroscience and oscillating flame dynamics. Kuramoto was quite surprised when the behavior of some physical systems, namely coupled arrays of Josephson junctions, followed his model.
The Duffing equation, named after Georg Duffing (1861–1944), is a non-linear second-order differential equation used to model certain damped and driven oscillators. The equation is given by where the (unknown) function is the displacement at time t, is the first derivative of with respect to time, i.e. velocity, and is the second time-derivative of i.e. acceleration. The numbers and are given constants.
In classical mechanics, anharmonicity is the deviation of a system from being a harmonic oscillator. An oscillator that is not oscillating in harmonic motion is known as an anharmonic oscillator where the system can be approximated to a harmonic oscillator and the anharmonicity can be calculated using perturbation theory. If the anharmonicity is large, then other numerical techniques have to be used. In reality all oscillating systems are anharmonic, but most approximate the harmonic oscillator the smaller the amplitude of the oscillation is.
The Rabi problem concerns the response of an atom to an applied harmonic electric field, with an applied frequency very close to the atom's natural frequency. It provides a simple and generally solvable example of light–atom interactions and is named after Isidor Isaac Rabi.
A pendulum is a body suspended from a fixed support such that it freely swings back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging it back and forth. The mathematics of pendulums are in general quite complicated. Simplifying assumptions can be made, which in the case of a simple pendulum allow the equations of motion to be solved analytically for small-angle oscillations.
A mechanical amplifier or a mechanical amplifying element is a linkage mechanism that amplifies the magnitude of mechanical quantities such as force, displacement, velocity, acceleration and torque in linear and rotational systems. In some applications, mechanical amplification induced by nature or unintentional oversights in man-made designs can be disastrous, causing situations such as the 1940 Tacoma Narrows Bridge collapse. When employed appropriately, it can help to magnify small mechanical signals for practical applications.
In perturbation theory, the Poincaré–Lindstedt method or Lindstedt–Poincaré method is a technique for uniformly approximating periodic solutions to ordinary differential equations, when regular perturbation approaches fail. The method removes secular terms—terms growing without bound—arising in the straightforward application of perturbation theory to weakly nonlinear problems with finite oscillatory solutions.
An LC circuit can be quantized using the same methods as for the quantum harmonic oscillator. An LC circuit is a variety of resonant circuit, and consists of an inductor, represented by the letter L, and a capacitor, represented by the letter C. When connected together, an electric current can alternate between them at the circuit's resonant frequency:
An RLC circuit is an electrical circuit consisting of a resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel. The name of the circuit is derived from the letters that are used to denote the constituent components of this circuit, where the sequence of the components may vary from RLC.
Kapitza's pendulum or Kapitza pendulum is a rigid pendulum in which the pivot point vibrates in a vertical direction, up and down. It is named after Russian Nobel laureate physicist Pyotr Kapitza, who in 1951 developed a theory which successfully explains some of its unusual properties. The unique feature of the Kapitza pendulum is that the vibrating suspension can cause it to balance stably in an inverted position, with the bob above the suspension point. In the usual pendulum with a fixed suspension, the only stable equilibrium position is with the bob hanging below the suspension point; the inverted position is a point of unstable equilibrium, and the smallest perturbation moves the pendulum out of equilibrium. In nonlinear control theory the Kapitza pendulum is used as an example of a parametric oscillator that demonstrates the concept of "dynamic stabilization".
In mathematics, the exponential response formula (ERF), also known as exponential response and complex replacement, is a method used to find a particular solution of a non-homogeneous linear ordinary differential equation of any order. The exponential response formula is applicable to non-homogeneous linear ordinary differential equations with constant coefficients if the function is polynomial, sinusoidal, exponential or the combination of the three. The general solution of a non-homogeneous linear ordinary differential equation is a superposition of the general solution of the associated homogeneous ODE and a particular solution to the non-homogeneous ODE. Alternative methods for solving ordinary differential equations of higher order are method of undetermined coefficients and method of variation of parameters.