Pentagrammic cuploid

Last updated
Pentagrammic cuploid
Pentagrammic cuploid.png
Type Cuploid
Faces 5 triangles
5 squares
1 pentagram
Edges 20
Vertices 10
Vertex configuration 5(5/2.4.3.4)
5(3.4.3/2.4/3)
Symmetry group C5v, [5], (*55)
Rotation group C5, [5]+, (55)
Dual polyhedron Pentagrammic keratinoid
Propertiesnon-orientable
has a membrane
3D model of a pentagrammic cuploid Pentagrammic cuploid.stl
3D model of a pentagrammic cuploid

In geometry, the pentagrammic cuploid or pentagrammmic semicupola is the simplest of the infinite family of cuploids. It can be obtained as a slice of the small complex rhombicosidodecahedron. As in all cupolae, the base polygon has twice as many edges and vertices as the top; but in this case the base polygon is a degenerate {10/2} decagram, as the top is a {5/2} pentagram. Hence, the degenerate base is withdrawn and the triangles are connected to the squares instead.

Contents

nd357
2 Tetrahemihexahedron.png
Crossed triangular cuploid
Pentagrammic cuploid.png
Pentagrammic cuploid
Heptagrammic cuploid.png
Heptagrammic cuploid
4 Crossed pentagonal cuploid.png
Crossed pentagonal cuploid
Crossed heptagrammic cuploid.png
Crossed heptagrammic cuploid

The pentagrammic cuploid may be seen as a section of the degenerate uniform polyhedron known as the small complex rhombicosidodecahedron:

Pentagrammic cuploid.png
Pentagrammic cuploid
Cantellated great icosahedron.png
Small complex rhombicosidodecahedron
Small ditrigonal icosidodecahedron.png
Small ditrigonal icosidodecahedron
Ditrigonal dodecadodecahedron.png
Ditrigonal dodecadodecahedron
Great ditrigonal icosidodecahedron.png
Great ditrigonal icosidodecahedron
Compound of five cubes.png
Compound of five cubes

(In the picture of the pentagrammic cuploid, the pentagram is red, the squares yellow, and the triangles blue. In the picture of the small complex rhombicosidodecahedron, the pentagrams are pink, the squares red, and the triangles yellow. The centres of the pentagrams have been removed as otherwise the red squares of the small complex rhombicosidodecahedron would be invisible.)

Taking one pentagram from the small complex rhombicosidodecahedron, then taking the five squares that neighbour it, then taking the five triangles that border these squares results in a pentagrammic cuploid. As this pentagrammic cuploid thus shares all its edges with this polyhedron, it may be termed an edge-faceting of it. The nondegenerate uniform polyhedra sharing the same edges as the small complex rhombicosidodecahedron are the three ditrigonal polyhedra, as well as the regular compound of five cubes: hence the pentagrammic cuploid is also an edge-faceting of these polyhedra.

As 5/2 > 2, the triangles and squares do not fully cover the bottom of the pentagrammic cuploid, and hence the centre of the pentagrammic base is accessible from both sides and covers no space. Hence it is a membrane and has not been filled in in the above illustration of the polyhedron, as filling it in would imply that the densities on either of the pentagram are different, when they are both 0. It has been conjectured that a polyhedron with 10 faces or less cannot have a membrane: the pentagrammic cuploid has 11 faces.

Dual polyhedron

3D model of a pentagrammic keratinoid Pentagrammic keratinoid.stl
3D model of a pentagrammic keratinoid

The dual of the pentagrammic cuploid has 5 kite and 5 antiparallelogram faces, and has been called the pentagrammic keratinoid by Inchbald, due to it being shaped like a hollow horn:

Pentagrammic keratinoid.png

Related Research Articles

<span class="mw-page-title-main">Stellation</span> Extending the elements of a polytope to form a new figure

In geometry, stellation is the process of extending a polygon in two dimensions, polyhedron in three dimensions, or, in general, a polytope in n dimensions to form a new figure. Starting with an original figure, the process extends specific elements such as its edges or face planes, usually in a symmetrical way, until they meet each other again to form the closed boundary of a new figure. The new figure is a stellation of the original. The word stellation comes from the Latin stellātus, "starred", which in turn comes from Latin stella, "star". Stellation is the reciprocal or dual process to faceting.

<span class="mw-page-title-main">Rhombicosidodecahedron</span> Archimedean solid

In geometry, the rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces.

<span class="mw-page-title-main">Truncated icosidodecahedron</span> Archimedean solid

In geometry, a truncated icosidodecahedron, rhombitruncated icosidodecahedron, great rhombicosidodecahedron, omnitruncated dodecahedron or omnitruncated icosahedron is an Archimedean solid, one of thirteen convex, isogonal, non-prismatic solids constructed by two or more types of regular polygon faces.

<span class="mw-page-title-main">Cupola (geometry)</span> Solid made by joining an n- and 2n-gon with triangles and squares

In geometry, a cupola is a solid formed by joining two polygons, one with twice as many edges as the other, by an alternating band of isosceles triangles and rectangles. If the triangles are equilateral and the rectangles are squares, while the base and its opposite face are regular polygons, the triangular, square, and pentagonal cupolae all count among the Johnson solids, and can be formed by taking sections of the cuboctahedron, rhombicuboctahedron, and rhombicosidodecahedron, respectively.

<span class="mw-page-title-main">Great dirhombicosidodecahedron</span> Uniform star polyhedron with 124 faces

In geometry, the great dirhombicosidodecahedron (or great snub disicosidisdodecahedron) is a nonconvex uniform polyhedron, indexed last as U75. It has 124 faces (40 triangles, 60 squares, and 24 pentagrams), 240 edges, and 60 vertices.

<span class="mw-page-title-main">Small stellated dodecahedron</span> A Kepler-Poinsot polyhedron

In geometry, the small stellated dodecahedron is a Kepler-Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol {52,5}. It is one of four nonconvex regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeting at each vertex.

<span class="mw-page-title-main">Great stellated dodecahedron</span> Kepler–Poinsot polyhedron

In geometry, the great stellated dodecahedron is a Kepler-Poinsot polyhedron, with Schläfli symbol {52,3}. It is one of four nonconvex regular polyhedra.

<span class="mw-page-title-main">Great icosahedron</span> Kepler-Poinsot polyhedron with 20 faces

In geometry, the great icosahedron is one of four Kepler–Poinsot polyhedra, with Schläfli symbol {3,52} and Coxeter-Dynkin diagram of . It is composed of 20 intersecting triangular faces, having five triangles meeting at each vertex in a pentagrammic sequence.

<span class="mw-page-title-main">Dodecadodecahedron</span> Polyhedron with 24 faces

In geometry, the dodecadodecahedron is a nonconvex uniform polyhedron, indexed as U36. It is the rectification of the great dodecahedron (and that of its dual, the small stellated dodecahedron). It was discovered independently by Hess (1878), Badoureau (1881) and Pitsch (1882).

<span class="mw-page-title-main">Nonconvex great rhombicosidodecahedron</span> Polyhedron with 62 faces

In geometry, the nonconvex great rhombicosidodecahedron is a nonconvex uniform polyhedron, indexed as U67. It has 62 faces (20 triangles, 30 squares and 12 pentagrams), 120 edges, and 60 vertices. It is also called the quasirhombicosidodecahedron. It is given a Schläfli symbol rr{53,3}. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Alternation (geometry)</span> Removal of alternate vertices

In geometry, an alternation or partial truncation, is an operation on a polygon, polyhedron, tiling, or higher dimensional polytope that removes alternate vertices.

In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvexity giving it a star-like visual quality.

<span class="mw-page-title-main">Compound of five cubes</span> Polyhedral compound

The compound of five cubes is one of the five regular polyhedral compounds. It was first described by Edmund Hess in 1876.

<span class="mw-page-title-main">Uniform star polyhedron</span> Self-intersecting uniform polyhedron

In geometry, a uniform star polyhedron is a self-intersecting uniform polyhedron. They are also sometimes called nonconvex polyhedra to imply self-intersecting. Each polyhedron can contain either star polygon faces, star polygon vertex figures, or both.

<span class="mw-page-title-main">Faceting</span>

In geometry, faceting is the process of removing parts of a polygon, polyhedron or polytope, without creating any new vertices.

<span class="mw-page-title-main">Small complex icosidodecahedron</span>

In geometry, the small complex icosidodecahedron is a degenerate uniform star polyhedron. Its edges are doubled, making it degenerate. The star has 32 faces, 60 (doubled) edges and 12 vertices and 4 sharing faces. The faces in it are considered as two overlapping edges as topological polyhedron.

<span class="mw-page-title-main">Small complex rhombicosidodecahedron</span>

In geometry, the small complex rhombicosidodecahedron is a degenerate uniform star polyhedron. It has 62 faces, 120 (doubled) edges and 20 vertices. All edges are doubled, sharing 4 faces, but are considered as two overlapping edges as a topological polyhedron.

<span class="mw-page-title-main">Crossed pentagonal cuploid</span> Polyhedron with 11 faces

In geometry, the crossed pentagonal cupoloid or crossed pentagonal semicupola is one member of the infinite family of cuploids. It can be obtained as a slice of the great complex rhombicosidodecahedron. As in all cupolae, the base polygon has twice as many edges and vertices as the top; but in this case the base polygon is a degenerate {10/4} decagram, as the top is a {5/4} pentagon. Hence, the degenerate base is withdrawn and the triangles are connected to the squares instead.

<span class="mw-page-title-main">Crossed pentagrammic cupola</span> Polyhedron with 12 faces

In geometry, the crossed pentagrammic cupola is one of the nonconvex Johnson solid isomorphs, being topologically identical to the convex pentagonal cupola. It can be obtained as a slice of the great rhombicosidodecahedron or quasirhombicosidodecahedron. As in all cupolae, the base polygon has twice as many edges and vertices as the top; in this case the base polygon is a decagram.

References