Perennial crop

Last updated

Perennial crops are crops that – unlike annual crops – don't need to be replanted each year. [1] [2] After harvest, they automatically grow back. By eliminating replanting, perennial cropping can reduce topsoil losses due to erosion, [3] increase biological carbon sequestration [4] due to reduced soil-disturbing tillage, and greatly reduce waterway pollution through agricultural runoff due to less nitrogen input.

Contents

Mechanisms

Example crops

See also

Related Research Articles

Crop rotation practice of growing a series of dissimilar or different types of crops in the same area in sequenced seasons

Crop rotation is the practice of growing a series of different types of crops in the same area across a sequenced of growing seasons. It reduces reliance on one set of nutrients, pest and weed pressure, and the probability of developing resistant pest and weeds.

Intensive farming Type of agriculture using high inputs to try to get high outputs

Intensive agriculture, also known as intensive farming and industrial agriculture, is a type of agriculture, both of crop plants and of animals, with higher levels of input and output per cubic unit of agricultural land area. It is characterized by a low fallow ratio, higher use of inputs such as capital and labour, and higher crop yields per unit land area.

Sustainable agriculture Farming relying on as much renewable resources as possible

Sustainable agriculture is farming in sustainable ways, which means meeting society's present food and textile needs, without compromising the ability for current or future generations to meet their needs. It can be based on an understanding of ecosystem services. There are many methods to increase the sustainability of agriculture. When developing agriculture within sustainable food systems, it is important to develop flexible business process and farming practices.

In agriculture, green manure is created by leaving uprooted or sown crop parts to wither on a field so that they serve as a mulch and soil amendment. The plants used for green manure are often cover crops grown primarily for this purpose. Typically, they are ploughed under and incorporated into the soil while green or shortly after flowering. Green manure is commonly associated with organic farming and can play an important role in sustainable annual cropping systems.

Cover crop crop planted to manage erosion and soil quality

In agriculture, cover crops are plants that are planted to cover the soil rather than for the purpose of being harvested. Cover crops manage soil erosion, soil fertility, soil quality, water, weeds, pests, diseases, biodiversity and wildlife in an agroecosystem—an ecological system managed and shaped by humans. Cover crops may be an off-season crop planted after harvesting the cash crop. They may grow over winter.

Polyculture form of agriculture which includes planting multiple crops together

Polyculture is a form of agriculture in which more than one species is grown at the same time and place in imitation of the diversity of natural ecosystems. Polyculture is the opposite of monoculture, in which only members of one plant or animal species are cultivated together. Polyculture has traditionally been the most prevalent form of agriculture in most parts of the world and is growing in popularity today due to its environmental and health benefits. There are many types of polyculture including annual polycultures such as intercropping and cover cropping, permaculture, and integrated aquaculture. Polyculture is advantageous because of its ability to control pests, weeds, and disease without major chemical inputs. As such, polyculture is considered a sustainable form of agriculture. However, issues with crop yield and biological competition have caused many modern major industrial food producers to continue to rely on monoculture instead.

The Land Institute non-profit organisation in the USA

The Land Institute is a non-profit research, education, and policy organization dedicated to sustainable agriculture based in Salina, Kansas, United States. Their goal is to develop an agricultural system based on perennial crops that "has the ecological stability of the prairie and a grain yield comparable to that from annual crops".

No-till farming Agricultural method which does not disturb soil through tillage.

No-till farming is an agricultural technique for growing crops or pasture without disturbing the soil through tillage. No-till farming decreases the amount of soil erosion tillage causes in certain soils, especially in sandy and dry soils on sloping terrain. Other possible benefits include an increase in the amount of water that infiltrates into the soil, soil retention of organic matter, and nutrient cycling. These methods may increase the amount and variety of life in and on the soil. Typically, no-tillage systems require the use of very large amounts of herbicides to control weeds.

Soil fertility the ability of a soil to sustain agricultural plant growth

Soil fertility refers to the ability of soil to sustain agricultural plant growth, i.e. to provide plant habitat and result in sustained and consistent yields of high quality. A fertile soil has the following properties:

Agroforestry Land use management system

Agroforestry is a land use management system in which trees or shrubs are grown around or among crops or pastureland. This intentional combination of agriculture and forestry has varied benefits, including increased biodiversity and reduced erosion. Agroforestry practices have been successful in sub-Saharan Africa and in parts of the United States.

Energy crop

Energy crops are low-cost and low-maintenance crops grown solely for energy production by combustion. The crops are processed into solid, liquid or gaseous fuels, such as pellets, bioethanol or biogas. The fuels are burned to generate electrical power or heat.

Biomass Biological material used as a renewable energy source

Biomass is plant or animal material used for energy production, or in various industrial processes as raw substance for a range of products. It can be purposely grown energy crops, wood or forest residues, waste from food crops, horticulture, food processing, animal farming, or human waste from sewage plants.

<i>Miscanthus giganteus</i> species of plant

Miscanthus × giganteus, the giant miscanthus, is a sterile hybrid of Miscanthus sinensis and Miscanthus sacchariflorus. It is a perennial grass with bamboo-like stems that can grow to heights of more than 4 metres (13 ft) in one season. Just like Pennisetum purpureum, Arundo donax and Saccharum ravennae, it is also called elephant grass.

Soil biodiversity refers to the relationship of soil to biodiversity and to aspects of the soil that can be managed in relation to biodiversity. Soil biodiversity relates to some catchment management considerations.

Perennial rice

Perennial rice are varieties of long-lived rice that are capable of regrowing season after season without reseeding; they are being developed by plant geneticists at several institutions. Although these varieties are genetically distinct and will be adapted for different climates and cropping systems, their lifespan is so different from other kinds of rice that they are collectively called perennial rice. Perennial rice—like many other perennial plants—can spread by horizontal stems below or just above the surface of the soil but they also reproduce sexually by producing flowers, pollen and seeds. As with any other grain crop, it is the seeds that are harvested and eaten by humans.

Soil management is the application of operations, practices, and treatments to protect soil and enhance its performance. It includes soil conservation, soil amendment, and optimal soil health. In agriculture, some amount of soil management is needed both in nonorganic and organic types to prevent agricultural land from becoming poorly productive over decades. Organic farming in particular emphasizes optimal soil management, because it uses soil health as the exclusive or nearly exclusive source of its fertilization and pest control.

Perennial grain

A perennial grain is a grain crop that lives and remains productive for two or more years, rather than growing for only one season before harvest, like most grains and annual crops. While many fruit, nut and forage crops are long-lived perennial plants, all major grain crops presently used in large-scale agriculture are annuals or short-lived perennials grown as annuals. Scientists from several nations have argued that perennial versions of today's grain crops could be developed and that these perennial grains could make grain agriculture more sustainable.

Soil compaction (agriculture)

Soil compaction, also known as soil structure degradation, is the increase of bulk density or decrease in porosity of soil due to externally or internally applied loads. Compaction can adversely affect nearly all physical, chemical and biological properties and functions of soil. Together with soil erosion, it is regarded as the "costliest and most serious environmental problem caused by conventional agriculture."

Soil regeneration The Science of Soil Regeneration

Soil regeneration, as a particular form of ecological regeneration within the field of restoration ecology, is creating new soil and rejuvenating soil health by: minimizing the loss of topsoil, retaining more carbon than is depleted, boosting biodiversity, and maintaining proper water and nutrient cycling. This has many benefits, such as: soil sequestration of carbon in response to a growing threat of climate change, a reduced risk of soil erosion, and increased overall soil resilience.

Carbon farming is a name for a variety of agricultural methods aimed at sequestering atmospheric carbon into the soil and in crop roots, wood and leaves. Increasing soil's carbon content can aid plant growth, increase soil organic matter (improving agricultural yield), improve soil water retention capacity and reduce fertilizer use (and the accompanying emissions of greenhouse gas nitrous oxide (N
2
O
). As of 2016, variants of carbon farming reached hundreds of millions of hectares globally, of the nearly 5 billion hectares (1.2×1010 acres) of world farmland. Soils can contain up to five per cent carbon by weight, including decomposing plant and animal matter and biochar.

References

  1. Berry, Wendell (5 January 2009). "A 50-Year Farm Bill". The New York Times. Retrieved 25 March 2011.
  2. 1 2 "The Perennialization Project: Perennials as a Pathway to Sustainable Agricultural Landscapes in the Upper Midwestern U.S." Iowa State University. Retrieved 25 March 2011.
  3. Wahlquist, Asa. "Perennial crops a win for food security". The Australian. Retrieved 24 March 2011.
  4. 1 2 "Terrestrial Carbon Removal and Sequestration". Negative Emissions Technologies and Reliable Sequestration: A Research Agenda. 2019. pp. 87–136. ISBN   978-0-309-48452-7.
  5. Rich, Deborah (24 November 2007). "Perennial crops: The garden that keeps giving". SFGate.com. Retrieved 25 March 2011.
  6. "Perennial Grain Cropping Research: Why Perennial Grain Crops?". The Land Institute. Archived from the original on 15 April 2013. Retrieved 25 March 2011.
  7. Zhou, X. (2010). "Perennial filter strips reduce nitrate levels in soil and shallow groundwater after grassland-to-cropland conversion". Journal of Environmental Quality. 39 (6): 2006–15. doi:10.2134/jeq2010.0151. PMID   21284298.
  8. Glover, J. D.; Reganold, J. P.; Bell, L. W.; Borevitz, J.; Brummer, E. C.; Buckler, E. S.; Cox, C. M.; Cox, T. S.; Crews, T. E.; Culman, S. W.; DeHaan, L. R.; Eriksson, D.; Gill, B. S.; Holland, J.; Hu, F.; Hulke, B. S.; Ibrahim, A. M. H.; Jackson, W.; Jones, S. S.; Murray, S. C.; Paterson, A. H.; Ploschuk, E.; Sacks, E. J.; Snapp, S.; Tao, D.; Van Tassel, D. L.; Wade, L. J.; Wyse, D. L.; Xu, Y. (24 June 2010). "Increased Food and Ecosystem Security via Perennial Grains". Science. 328 (5986): 1638–1639. doi:10.1126/science.1188761.
  9. Dohleman, Frank G.; Long, Stephen P. (August 2009). "More Productive Than Maize in the Midwest: How Does Miscanthus Do It?". Plant Physiology. 150 (4): 2104–2115. doi:10.1104/pp.109.139162. PMC   2719137 . PMID   19535474.
  10. Rouw, Anneke de; Soulilad, B.; Phanthavong, K.; Dupin, B. (2005). "The adaptation of upland rice cropping to ever-shorter fallow periods and its limit". In Bouahom, B.; Glendinning, A.; Nilsson, S.; Victor, M. (eds.). Poverty reduction and shifting cultivation stabilization in the uplands of Lao PDR. CiteSeerX   10.1.1.538.3332 . hdl:10568/37412. OCLC   169891017.