Picrophilus oshimae

Last updated

Picrophilus oshimae
Scientific classification
Domain:
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Species:
P. oshimae
Binomial name
Picrophilus oshimae
Schleper et al. 1996

Picrophilus oshimae is a species of Archaea described in 1996. [1] Picrophilus oshimae was found in a fumarole in Hokkaido, Japan. The hot spring the fumarole was located in had a pH of 2.2. [2]

Contents

See also

Related Research Articles

<span class="mw-page-title-main">Extremophile</span> Organisms capable of living in extreme environments

An extremophile is an organism that is able to live in extreme environments, i.e. environments with conditions approaching or expanding the limits of what known life can adapt to, such as extreme temperature, radiation, salinity, or pH level.

A halophile is an extremophile that thrives in high salt concentrations. In chemical terms, halophile refers to a Lewis acidic species that has some ability to extract halides from other chemical species.

<span class="mw-page-title-main">Thermophile</span> Organism that thrives at relatively high temperatures

A thermophile is an organism—a type of extremophile—that thrives at relatively high temperatures, between 41 and 122 °C. Many thermophiles are archaea, though some of them are bacteria and fungi. Thermophilic eubacteria are suggested to have been among the earliest bacteria.

<span class="mw-page-title-main">Thermoproteota</span> Phylum of archaea

The Thermoproteota are prokaryotes that have been classified as a phylum of the Archaea domain. Initially, the Thermoproteota were thought to be sulfur-dependent extremophiles but recent studies have identified characteristic Thermoproteota environmental rRNA indicating the organisms may be the most abundant archaea in the marine environment. Originally, they were separated from the other archaea based on rRNA sequences; other physiological features, such as lack of histones, have supported this division, although some crenarchaea were found to have histones. Until recently all cultured Thermoproteota had been thermophilic or hyperthermophilic organisms, some of which have the ability to grow at up to 113°C. These organisms stain Gram negative and are morphologically diverse, having rod, cocci, filamentous and oddly-shaped cells.

<span class="mw-page-title-main">Archaeoglobaceae</span> Family of archaea

Archaeoglobaceae are a family of the Archaeoglobales. All known genera within the Archaeoglobaceae are hyperthermophilic and can be found near undersea hydrothermal vents. Archaeoglobaceae are the only family in the order Archaeoglobales, which is the only order in the class Archaeoglobi.

<span class="mw-page-title-main">Thermoacidophile</span> Microorganisms which live in water with high temperature and high acidity

A thermoacidophile is an extremophilic microorganism that is both thermophilic and acidophilic; i.e., it can grow under conditions of high temperature and low pH. The large majority of thermoacidophiles are archaea or bacteria, though occasional eukaryotic examples have been reported. Thermoacidophiles can be found in hot springs and solfataric environments, within deep sea vents, or in other environments of geothermal activity. They also occur in polluted environments, such as in acid mine drainage.

In taxonomy, the Picrophilaceae are a family of microbes within Thermoplasmatales.

<i>Ferroplasma</i> Genus of archaea

Ferroplasma is a genus of Archaea that belong to the family Ferroplasmaceae. Members of the Ferroplasma are typically acidophillic, pleomorphic, irregularly shaped cocci.

<i>Picrophilus</i> Genus of archaea

In taxonomy, Picrophilus is an archaean genus of the family Picrophilaceae.

In taxonomy, Thermococcus is a genus of thermophilic Archaea in the family the Thermococcaceae.

Stetteria is a genus of archaeans in the family Desulfurococcaceae. Up to now there is only one species of this genus known, Stetteria hydrogenophila.

Aeropyrum pernix is a species of extremophile archaea in the archaeal phylum Thermoproteota. It is an obligatorily thermophilic species. The first specimens were isolated from sediments in the sea off the coast of Japan.

<span class="mw-page-title-main">Archaea</span> Domain of single-celled organisms

Archaea is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria, but this term has fallen out of use.

<span class="mw-page-title-main">Acidophiles in acid mine drainage</span>

The outflow of acidic liquids and other pollutants from mines is often catalysed by acid-loving microorganisms; these are the acidophiles in acid mine drainage.

Thermococcus celer is a Gram-negative, spherical-shaped archaeon of the genus Thermococcus. The discovery of T. celer played an important role in rerooting the tree of life when T. celer was found to be more closely related to methanogenic Archaea than to other phenotypically similar thermophilic species. T. celer was the first archaeon discovered to house a circularized genome. Several type strains of T. celer have been identified: Vu13, ATCC 35543, and DSM 2476.

Glycerate 2-kinase is an enzyme with systematic name ATP:D-glycerate 2-phosphotransferase. This enzyme catalyses the following chemical reaction

Picrophilus torridus is a species of Archaea described in 1996. Picrophilus torridus was found in soil near a hot spring in Hokkaido, Japan. The pH of the soil was less than 0.5. P. torridus also has one of the smallest genomes found among organisms that are free-living and are non-parasitic and a high coding density, meaning that the majority of its genes are coding regions and provide instructions for building proteins. The current research suggests the two hostile conditions favored by P. torridus have exerted selective pressure towards having a small and compact genome, which is less likely to be damaged by the harsh environment.

Saccharolobus solfataricus is a species of thermophilic archaeon. It was transferred from the genus Sulfolobus to the new genus Saccharolobus with the description of Saccharolobus caldissimus in 2018.

Christa Schleper is a German microbiologist known for her work on the evolution and ecology of Archaea. Schleper is Head of the Department of Functional and Evolutionary Biology at the University of Vienna in Austria.

<i>Adnaviria</i> Realm of viruses

Adnaviria is a realm of viruses that includes archaeal viruses that have a filamentous virion and a linear, double-stranded DNA genome. The genome exists in A-form (A-DNA) and encodes a dimeric major capsid protein (MCP) that contains the SIRV2 fold, a type of alpha-helix bundle containing four helices. The virion consists of the genome encased in capsid proteins to form a helical nucleoprotein complex. For some viruses, this helix is surrounded by a lipid membrane called an envelope. Some contain an additional protein layer between the nucleoprotein helix and the envelope. Complete virions are long and thin and may be flexible or a stiff like a rod.

References

  1. Schleper; Pühler; Klenk & Zillig (July 1996). "Picrophilus oshimae and Picrophilus tomdus fam. nov., gen. nov., sp. nov., Two Species of Hyperacidophilic, Thermophilic, Heterotrophic, Aerobic Archae". International Journal of Systematic Bacteriology . 46 (3): 814–816. doi: 10.1099/00207713-46-3-814 . ISSN   1466-5034. OCLC   807119723.
  2. Siddiqui; Thomas, eds. (2008). "Thermoacidophiles and their Protein Adaptation to Low pH and High Temperature". Protein Adaptation in Extremophiles. Nova Publishers. ISBN   9781604560190 . Retrieved 31 October 2013.

Further reading