Plyometrics

Last updated
A US Marine performs plyometric jumps in Camp Foster, Okinawa USMC-05301.jpg
A US Marine performs plyometric jumps in Camp Foster, Okinawa

Plyometrics, also known as jump training or plyos, are exercises in which muscles exert maximum force in short intervals of time, with the goal of increasing power (speed-strength). This training focuses on learning to move from a muscle extension to a contraction in a rapid or "explosive" manner, such as in specialized repeated jumping. [1] Plyometrics are primarily used by athletes, especially martial artists, sprinters and high jumpers, [2] to improve performance, [3] and are used in the fitness field to a much lesser degree. [4]

Contents

Overview

Plyometrics include explosive exercises to activate the quick response and elastic properties of the major muscles. It was initially adopted by Soviet Olympians in the 1950s, and then by sportspeople worldwide. [5] Sports using plyometrics include basketball, tennis, badminton, squash and volleyball as well as the various codes of football. [6] The term "plyometrics" was coined by Fred Wilt after watching Soviet athletes prepare for their events in track and field. [7] He began a collaboration with trainer Michael Yessis to promote plyometrics.

Since its introduction in the early 1980s, two forms of plyometrics have evolved. In the original version, created by Russian scientist Yuri Verkhoshansky, it was defined as the shock method. [8] [9] In this, the athlete would drop down from a height and experience a "shock" upon landing. This in turn would bring about a forced eccentric contraction which was then immediately switched to a concentric contraction as the athlete jumped upward. The landing and takeoff were executed in an extremely short period of time, in the range of 0.1–0.2 second. [9] Explosive plyometrics describes the approach originally created by Verkhoshansky. [3] He experimented with many different exercises, but the depth jump appeared to be the best for duplicating the forces in the landing and takeoff.

The second version of plyometrics, seen to a greater extent in the United States, involves any form of jump regardless of execution time.

Etymology

The term plyometric is a combination of Greek words πλείων (pleíōn), which means "more", and μέτρον (métron) "measure". Fred Wilt admits that it is not a very good term, but it was the best he could come up with. The spelling that would match the Greek origin is pliometrics. [10] Several imaginary Greek words that would explain the y have been cited. [11] [12] [13]

History

Fred Wilt, a former US Olympic long-distance runner, is credited with coining the term plyometrics after watching the Russians execute jumps in their warm-ups prior to their event in track and field. He could not understand why the Russians were doing all of these jumps while the Americans were doing multiple static stretches, but he firmly believed it was one of the reasons why they were so successful in many events. [7] From its beginnings in the early 1980s, the term plyometrics gained greater popularity and is now well established. When Fred Wilt learned of the work being done by Michael Yessis in the field of Russian training methods, they quickly teamed up to help disseminate information on plyometrics.

In collaboration with Yessis who visited and worked with Verkhoshansky [14] in the Soviet Union in the early 1980s, plyometrics was gradually disseminated in the US. Yessis brought this information on plyometrics back to the US and in the following years was able to create even more ways of using this method to train and improve explosive power.

Plyometrics (the shock method) was created by Yuri Verkhoshansky in the late 1960s, early 1970s. [9] Since then, the shock method of plyometrics is still being practiced for improvement of athletic performance by what appears to be a relatively limited number of athletes. These athletes still do depth jumps, the key exercise in the shock method, according to the guidelines established by Verkhoshansky.

Most athletes execute simple and complex jumps and call them plyometrics rather than jump training as it was called in the past. This includes the depth jump which was executed in ways different from what was recommended by Verkhoshansky. This form of jump training is very popular but plyometrics is a buzzword for all types of jumps, regardless of how long it takes to execute the jump. Its use is so pervasive that it is even possible to find push-ups described as being plyometric.

Due to the wide use and appeal of the term plyometrics, the true meaning of plyometrics as developed by Verkhoshansky has for the most part been forgotten. Verkhoshansky was well known and respected worldwide in both the scientific and in the coaching arenas. He was relatively unknown in the United States except for some of his articles that were translated and published in the Soviet Sports Review, later called the Fitness and Sports Review International.

In addition to creating the shock method, Verkhoshansky is credited with developing the stretch-shortening concept of muscle contractions and the development of specialized (dynamic correspondence) strength exercises. Plyometrics, or more specifically the shock method, is considered a form of specialized strength development.

Before undertaking plyometric training, it is necessary to distinguish jumps that are commonly called plyometric and true plyometric jumps as exemplified in the depth jump which is illustrative of the shock method. Since its inception in the former Soviet Union as the shock method, there have been other forms of the plyometric exercises created by Yessis that do not involve jump exercises. For details and illustrations of these exercises see "Explosive Running" [15] and "Explosive Plyometrics". [3] These exercises involve the stretch-shorten concept that underlies the shock method.

Exercises

Method

In the depth jump, the athlete experiences a shock on landing in which the hip, knee, and ankle extensor muscles undergo a powerful eccentric contraction. For the muscles to respond explosively, the eccentric contraction is then quickly switched to the isometric (when the downward movement stops) and then the concentric contraction, in a minimum amount of time. [19] This allows the athlete to jump upward as high as possible.

In the eccentric contraction, the muscles are involuntarily lengthened, while in the concentric contraction, the muscles are shortened after being tensed. Most of the stretching and shortening takes place in the tendons that attach to the muscles involved rather than in the muscles. To execute the depth jump, the athlete stands on a raised platform, usually not greater than 20–30 inches (51–76 cm) high, and then steps out and drops down in a vertical pathway to make contact with the floor. The height used by most athletes is usually quite low in the early stages of training. The key is how high the athlete jumps in relation to the height of the takeoff platform. Technique and jump height are most important at this time. While the body is dropping, the athlete consciously prepares the muscles for the impact by tensing the muscles. The flooring upon which the athlete drops down on should be somewhat resilient, mainly for prevention of injury. Upon making contact with the floor, the athlete then goes into slight leg flex to absorb some of the force for safety. However, the main role played by the muscles and tendons is to withstand the force that is experienced in the landing. This force is withstood in eccentric contraction. When muscle contraction is sufficiently great, it is able to stop the downward movement very quickly.

This phase is sometimes called the phase of amortization in which the athlete absorbs some of the force and stops downward movement by the strong eccentric contraction of the muscles. The strong eccentric contraction prepares the muscles to switch to the concentric contraction in an explosive manner for takeoff.

When the athlete drops down to the floor, the body experiences an impact upon landing. The higher the height of the step-off platform, the greater the impact force upon landing. This creates a shock to the body which the body responds to by undergoing a strong involuntary muscular contraction to prevent the body from collapsing on the ground. This in turn produces great tension in the muscles and tendons which is then given back in a return upward movement. The faster the change in the muscular contractions, the greater the power created and the resulting height attained. [9]

More specifically, the muscles and tendons undergo a stretch (eccentric contraction) while landing which is needed to absorb some of the force generated but most importantly, to withstand the force that is produced by the shock that occurs on the landing. The greater the shock (forces experienced on landing), the stronger the eccentric contraction will be, which in turn produces even greater tension. This tension, which is potential force, is then given back in the return movement when the muscular contractions switch to the concentric or shortening regime. [3]

However, for maximum return of energy, minimum time must elapse from when the force is received to when they are returned. The greater the time between receiving the forces and giving them back, the less is the return and the less the height that can be achieved in the jump. Most of the lengthening and shortening occurs in the respective muscle tendons which have greater elasticity.

Another way of saying this is that the faster the switching from the eccentric to the concentric contraction, the greater will be the force produced and the greater the return movement. The speed of the switching is extremely fast, 0.20 seconds or less. For example, high-level sprinters execute the switch from the eccentric contraction that occurs when the foot hits the ground to the concentric contraction when the foot breaks contact with the ground in less than 0.10 seconds. In world-class sprinters, the time is approximately 0.08 seconds. The exact platform height used by most athletes in the depth jump should be less than 30 inches (76 cm) in the early stages of training. Most athletes start at approximately 12 inches (30 cm) after doing some jump training. They then gradually work up to 20 inches (51 cm) and then to 30 inches depending upon how well the jumps are executed. The main criterion is that the athlete is jumping as high as possible on every jump.

If the athlete gradually improves his jump height, the same platform height is continued until increases in jump height are no longer observed. At this time, takeoff height is increased by a few inches. If the athlete continually fails to jump very high, the height of the drop-down is lowered somewhat. [20] Most important here is how high the athlete jumps after the drop-down.

The maximum platform height used by a high level athlete is no more than 40 inches (100 cm). Rather than developing greater explosive power this height leads to more eccentric strength development. Going higher than 30 inches (76 cm) is usually counterproductive and may lead to injury. This occurs when the intensity of the forced involuntary eccentric contraction upon landing is greater than the muscles can withstand. In addition, the athlete will not be able to execute a quick return (fast transition between muscular contractions), which is the key to successful execution of explosive plyometrics.

Because of the forces involved and the quickness of execution, the central nervous system is strongly involved. [21] It is important that the athlete not overdo using the shock plyometric method. Doing so will lead to great fatigue, and, according to Verkhoshansky, sleep disturbances. [22] Athletes have great difficulty sleeping well if they execute too many depth jumps. This indicates that athletes must be well-prepared physically before doing this type of training. [22]

Technique of jumping is also very important when executing plyometric exercises. In essence, the athlete goes into a slight squat (crouch) upon landing in which the hip, knee, and ankle joints flex. The takeoff or jump upward is executed in a sequence initiated by hip-joint extension followed by knee-joint extension which begins during the hip-joint extension. As the knee-joint extension is taking place, ankle-joint extension begins and is the only action that occurs as the takeoff (breaking contact with the ground) takes place. All three actions contribute force to the upward jump, but the knee-joint extension is the major contributor. [15]

As simple jumping

The most common type of plyometrics used in the United States is simple and relatively easy jump exercises executed with little regard to execution time. These jumps are effective for athletes who execute skills in their sport that do not require explosive type muscular contractions. An example is long-distance running in which the runners execute repeat actions of 20 to 30 consecutive jumps and other cyclic-type activities such as leaping for multiple repetitions. [15]

Such plyometric jumps are also used as a warm-up for doing explosive plyometric jumps and for initial preparation of the muscles prior to undertaking exercises such as depth jumps. In essence, they are effective in the early stages of learning how to do plyometric exercises and for preparing the muscles for explosive or quick jumps. These jumps are similar to those done by youngsters in the playground or in neighborhood games and as such, do not require additional preparation. Athletes, regardless of their level of expertise, can undertake such jumps in the initial stages of training.

When athletes who have been doing plyometrics without regard to time of execution first attempt to execute explosive plyometrics, they often fail because the time of execution is too long. This occurs quite often in the depth jump. The athlete usually sinks (drops) too low which takes too long to make the transition from the eccentric to the concentric contraction. As a result, the exercise becomes a jump-strength exercise and not a true plyometric one.

Jump technique remains the same regardless of whether it is a true plyometric exercise or a jump exercise. The hips, knees, and ankles flex when landing and the joints extend on the upward return. The sequence and overlapping in the sequence is basically the same, beginning with the hip extension, followed by knee extension, and ending with the ankle-plantar flexing. The major differences in execution are the depth of the landing and the time of executing the switch from the eccentric to the concentric contraction.

Studies have been conducted testing ten various plyometric exercises on overall performance during jumping examined by EMG, power, and ground reaction force (GRF). Of the ten exercises, the single-leg cone hops, box jumps, tuck jumps, and two-legged vertical jumps produced the highest EMG values, alluding to greater motor recruitment. Power was examined in dumbbell jumps, depth jumps, countermovement jumps, squat jumps, and tuck jumps which all produced the higher power scale readings. In terms of athletic performance and training, the plyometric movements that utilize total body vibration produced an overall increase in performance output. A recent study examined two groups using the same plyometric protocol in combination with weight training, one using high loads and the other utilizing small loads, and similar decreases in power were found. This shows that the plyometric exercises themselves had a greater effect in the decrease in power output rather than the type of weight training. [23] [24] [25]

Safety considerations

Plyometrics have been shown to have benefits for reducing lower extremity injuries in team sports while combined with other neuromuscular training (i.e. strength training, balance training, and stretching). Plyometric exercises involve an increased risk of injury due to the large force generated during training and performance, and should only be performed by well conditioned individuals under supervision. Good levels of physical strength, flexibility, and proprioception should be achieved before beginning plyometric training.

The specified minimum strength requirement varies depending on where the information is sourced and the intensity of the plyometrics being performed. Chu (1998) recommends that a participant be able to perform 50 repetitions of the squat exercise at 60% of his or her body weight before doing plyometrics. Core (abdomen) strength is also important.

Flexibility is required both for injury prevention and to enhance the effect of the stretch shortening cycle. Some advanced training methods combine plyometrics and intensive stretching in order to both protect the joint and make it more receptive to the plyometric benefits. [26]

Proprioception is an important component of balance, coordination and agility, which is also required for safe performance of plyometric exercises.

Further safety considerations include:

Plyometrics are not inherently dangerous, but the highly focused and intense movements used in repetition increase the potential level of stress on joints and musculo-tendonous units. Therefore, safety precautions are strong prerequisites to this particular method of exercise. Low-intensity variations of plyometrics are frequently utilized in various stages of injury rehabilitation, indicating that the application of proper technique and appropriate safety precautions can make plyometrics safe and effective for many people.

Benefits

Many professional and Olympic athletes use plyometrics training to improve muscular strength and jumping abilities which therefore increases their power. There are varying levels of intensity to plyometrics. Another benefit of plyometrics is that you can vary your level of intensity which means anyone looking to improve strength and jumping training can be involved regardless of fitness. With there being so many exercises this means you are less likely to get burned out and have a wide range of exercises to choose from. Another good reason with so many exercises being available are that you can find exercises that don't require the use of any equipment. It also increases muscular strength and endurance, also increases metabolic rate which increases weight loss and heart rate. [27]

Loaded plyometrics

Dumbbell weighted jumps A1.png
Dumbbell weighted jumps A2.png
A vertical jump with two 15kg dumbbells held just above the shoulders.

Plyometric exercises are sometimes performed with an additional load, or weight added. In such cases, they are referred to as loaded plyometrics or weighted jumps. The weight is held or worn. It may be in the form of a barbell, trap bar, dumbbells, or weighted vest. For instance, a vertical jump whilst holding a trap bar or jumping split squats whilst holding dumbbells. In addition, a regular weight lifting exercise is sometimes given a plyometric component, such as is found in a loaded jump squat. Jumping onto plyo boxes or over hurdles whilst holding weights is not recommended for safety reasons. The advantage of loaded plyometric exercises is that they increase the overall force with which the exercise is performed. This can enhance the positive effect of the exercise and further increase the practitioner's ability to apply explosive power. [28]

Unilateral plyometrics

Unilateral plyometrics are jumping exercises which involve only one foot being in contact with the ground at some stage. This can include jumping off of, and landing on, the same foot i.e. hopping, jumping from one foot and then landing on the other, jumping from one foot and landing on two, or jumping off two and landing on one. It typically makes more intense demands on the legs than bilateral plyometric training and can be used to further enhance explosive power. [29] The intensity of the exercises can be manipulated through the adjusting of box and hurdle height, and any weight which is held or worn. [30] The greatest intensity can be achieved whereby the height or the distance travelled is maximised. [31]

A hop test involves a comparison between the hopping height or distance achievable by the left and right legs, considered separately. It is used to assess the relative strength levels of each leg and whether there is a muscle imbalance i.e. a strength discrepancy between the left and right sides which results in a significant variation in the results. If such an imbalance is found, unilateral plyometrics may be used to alleviate it. [32] As the legs are used singly, and perform the same amount of work, the body and legs may be strengthened more evenly than bilateral plyometrics, which may involve one leg doing an excessively large amount of the work.

Some forms of unilateral plyometrics involve a cyclic alternation between the legs e.g. repeatedly jumping from one foot to the other. As runners perform a similar action of alternating between left and right legs, and each step has an acceleration phase like a jump does, then based upon this commonality, such unilateral plyometrics are considered to transfer effectively to running and sprinting and improve performance. [33]

See also

Related Research Articles

<span class="mw-page-title-main">Jumping</span> Form of movement in which an organism or mechanical system propels itself into the air

Jumping or leaping is a form of locomotion or movement in which an organism or non-living mechanical system propels itself through the air along a ballistic trajectory. Jumping can be distinguished from running, galloping and other gaits where the entire body is temporarily airborne, by the relatively long duration of the aerial phase and high angle of initial launch.

<span class="mw-page-title-main">Jumping jack</span> Physical jumping exercise

A jumping jack, also known as a star jump and called a side-straddle hop in the US military, is a physical jumping exercise performed by jumping to a position with the legs spread wide and the hands going overhead, sometimes in a clap, and then returning to a position with the feet together and the arms at the sides.

<span class="mw-page-title-main">Calisthenics</span> Form of strength training exercises

Calisthenics or callisthenics (/ˌkælɪsˈθɛnɪks/) is a form of strength training that utilizes an individual's body weight as resistance to perform multi-joint, compound movements with little or no equipment.

<span class="mw-page-title-main">Strength training</span> Performance of physical exercises designed to improve strength

Strength training, also known as weight training or resistance training, involves the performance of physical exercises that are designed to improve strength and endurance. It is often associated with the lifting of weights. It can also incorporate a variety of training techniques such as bodyweight exercises, isometrics, and plyometrics.

<span class="mw-page-title-main">Squat (exercise)</span> Workout that targets the legs

A squat is a strength exercise in which the trainee lowers their hips from a standing position and then stands back up. During the descent, the hip and knee joints flex while the ankle joint dorsiflexes; conversely the hip and knee joints extend and the ankle joint plantarflexes when standing up. Squats also help the hip muscles.

<span class="mw-page-title-main">Isometric exercise</span> Static contraction exercises

An isometric exercise is an exercise involving the static contraction of a muscle without any visible movement in the angle of the joint. The term "isometric" combines the Greek words isos (equal) and -metria (measuring), meaning that in these exercises the length of the muscle and the angle of the joint do not change, though contraction strength may be varied. This is in contrast to isotonic contractions, in which the contraction strength does not change, though the muscle length and joint angle do.

Complex training, also known as contrast training or post-activation potentiation training, involves the integration of strength training and plyometrics in a training system designed to improve explosive power. According to Jace Derwin:

Strength training and plyometric training are both effective measures for increasing athletic performance independent of each other, but a true program designed for power-based athletes needs to incorporate both disciplines. A study done in 2000 in the NSCA's Journal of Strength and Conditioning Research measured three different training protocols: strength training, plyometric training, and a combination of both. The group that used combined methods was the only group that showed significant increases in BOTH strength and power.

<span class="mw-page-title-main">Lunge (exercise)</span> Type of exercise

A lunge can refer to any position of the human body where one leg is positioned forward with knee bent and foot flat on the ground while the other leg is positioned behind. It is used by athletes in cross-training for sports, by weight-trainers as a fitness exercise, and by practitioners of yoga as part of an asana regimen.

<span class="mw-page-title-main">Vertical jump</span> Jump vertically in the air

A vertical jump or vertical leap is the act of jumping upwards into the air. It can be an exercise for building both endurance and strength, and is also a standard test for measuring athletic performance. It may also be referred to as a Sargent jump, named for Dudley Allen Sargent.

<span class="mw-page-title-main">Outline of exercise</span> Overview of and topical guide to exercise

The following outline is provided as an overview of and topical guide to exercise:

<span class="mw-page-title-main">Bodyweight exercise</span> Strength-training exercise to provide resistance against gravity

Bodyweight exercises are strength training exercises that use an individual's own weight to provide resistance against gravity. Bodyweight exercises can enhance a range of biomotor abilities including strength, power, endurance, speed, flexibility, coordination and balance. Such strength training has become more popular among recreational and professional athletes. Bodyweight training uses simple abilities like pushing, pulling, squatting, bending, twisting and balancing. Movements such as the push-up, the pull-up, and the sit-up are among the most common bodyweight exercises.

<span class="mw-page-title-main">Ballistic training</span> The maximal acceleration of weight for exercise.

Ballistic training, also known as compensatory acceleration training, uses exercises which accelerate a force through the entire range of motion. It is a form of power training which can involve throwing weights, jumping with weights, or swinging weights in order to increase explosive power. The intention in ballistic exercises is to maximise the acceleration phase of an object's movement and minimise the deceleration phase. For instance, throwing a medicine ball maximises the acceleration of the ball. This can be contrasted with a standard weight training exercise where there would be a pronounced deceleration phase at the end of the repetition i.e. at the end of a bench press exercise the barbell is decelerated and brought to a halt. Similarly, an athlete jumping whilst holding a trap bar maximises the acceleration of the weight through the process of holding it whilst they jump- where as they would decelerate it at the end of a standard trap bar deadlift.

<span class="mw-page-title-main">Burpee (exercise)</span> Full body exercise

The burpee, a squat thrust with an additional stand between repetitions, is a full body exercise used in strength training. The movement itself is primarily an anaerobic exercise, but when done in succession over a longer period can be utilized as an aerobic exercise.

<span class="mw-page-title-main">Bulgarian bag</span>

The Bulgarian bag, also known as the Bulgarian training bag, is a crescent-shaped exercise equipment used in strength training, plyometric weight training, cardiovascular training, and general physical fitness. The bags are made of leather or canvas and filled with sand; they weigh from 11 pounds (5.0 kg) to 50 pounds (23 kg) and have flexible handles to allow for both upper and lower body training, and for building grip strength.

Eccentric training is a type of strength training that involves using the target muscles to control weight as it moves in a downward motion. This type of training can help build muscle, improve athletic performance, and reduce the risk of injury. An eccentric contraction is the motion of an active muscle while it is lengthening under load. Eccentric training is repetitively doing eccentric muscle contractions. For example, in a biceps curl the action of lowering the dumbbell back down from the lift is the eccentric phase of that exercise – as long as the dumbbell is lowered slowly rather than letting it drop.

<span class="mw-page-title-main">Michael Yessis</span>

Michael Yessis is an American sports performance trainer who translated and adapted sports training methodology from the former Soviet Union.

Football strength is a training regime, considered the most complex physical quality to be developed by an athlete. The training regime, exercises used, how the exercises are performed, and the types of equipment all play important roles in achieving desired results.

<span class="mw-page-title-main">Kick (association football)</span> Skill in association football

A kick is a skill in association football in which a player strikes the ball with their foot. Association football, more commonly referred to as football and also known as soccer, is a sport played world-wide, with up to 265 million people around the world participating on a yearly basis. Kicking is one of the most difficult skills to acquire in football. This skill is also vitally important, as kicking is the way in which passes are made and the primary means by which goals are scored.

<span class="mw-page-title-main">Power training</span> Common type of speed and strength training

Power training typically involves exercises which apply the maximum amount of force as fast as possible; on the basis that strength + speed = power. Jumping with weights or throwing weights are two examples of power training exercises. Regular weight training exercises such as the clean and jerk and power clean may also be considered as being power training exercises due to the explosive speed required to complete the lifts. Power training may also involve contrasting exercises such as heavy lifts and plyometrics, known as complex training, in an attempt to combine the maximal lifting exertions with dynamic movements. This combination of a high strength exercise with a high speed exercise may lead to an increased ability to apply power. Power training frequently specifically utilises two physiological processes which increase in conjunction with one another during exercise. These are deep breathing, which results in increased intra-abdominal pressure; and post-activation potentation, which is the enhanced activation of the nervous system and increased muscle fibre recruitment. Power training programmes may be shaped to increase the trainee's ability to apply power in general, to meet sports specific criteria, or both.

<span class="mw-page-title-main">Plyo box</span> Exercise equipment

A plyometric box, also simply known as a plyo box or jump box, is a piece of training equipment used for plyometric exercises. Plyometric exercises are a type of explosive power training that uses muscle elasticity to produce rapid, forceful movements. The plyometric box provides a stable platform for performing plyometric exercises such as box jumps, box squats, and box step-ups.

References

  1. Chu, Donald (1998). Jumping into plyometrics (2nd ed.). Champaign, IL: Human Kinetics. pp.  1–4. ISBN   978-0880118460.
  2. Starks, Joe (25 April 2013). "An Athlete's Guide to Jumping Higher: Vertical Jump Secrets Uncovered!". Athlete Culture. Archived from the original on 11 May 2013. Retrieved 30 April 2013.
  3. 1 2 3 4 Michael Yessis (2009). Explosive Plyometrics. Ultimate Athlete Concepts. ISBN   978-098171806-4.
  4. Yessis, Michael (2 January 2013). "Why is plyometrics so misunderstood and misapplied?". doctoryessis.com. Retrieved 3 April 2020.
  5. "Shock Method and Plyometrics: Updates And An In-Depth Examination" (PDF).
  6. "RUNNING STRONG, INTRODUCING PLYOMETRICS". Fitness PRO Magazine. Archived from the original on 2016-06-04. Retrieved 2016-05-18.
  7. 1 2 Wilt, Fred & Yessis, Michael. Soviet Theory, Technique and Training for Running and Hurdling. Vol 1. Championship Books, 1984.
  8. Yuri Verkhoshansky (1966). "Perspectives in the Improvement of Speed-Strength Preparation of Jumpers". Legkaya Atletika(Track and Field). 9: 11–12.
  9. 1 2 3 4 Yuri Verkhoshanski (1967). "Are Depth Jumps Useful?". Legkaya Atletika (Track and Field). 12: 9.
  10. Knuttgen, Howard G.; Kraemer, William J. (1987). "Terminology and Measurement in Exercise Performance". Journal of Applied Sport Science Research. 1 (1): 1–10. Retrieved December 16, 2023.
  11. Chmielewski, Terese L.; Myer, Gregory D.; Kauffman, Douglas; Tillman, Susan M. (2006). "Plyometric Exercise in the Rehabilitation of Athletes: Physiological Responses and Clinical Application". Journal of Orthopaedic & Sports Physical Therapy. 36 (5): 308–319. doi:10.2519/jospt.2006.2013 . Retrieved December 16, 2023. plythein.
  12. Voight, Michael L.; Tippett, Steven R. (2013). "10: Plyometric Exercise in Rehabilitation". In Hoogenboom, Barbara J.; Voight, Michael L.; Prentice, William E. (eds.). Musculoskeletal Interventions: Techniques for Therapeutic Exercise (3rd ed.). McGraw-Hill. Retrieved December 16, 2023. plythein.
  13. Flom, Cynthia K. (1993). Plyometrics. Physical Therapy Scholarly Projects 145. University of North Dakota. p. 2. Retrieved December 16, 2023. pleythyein.
  14. McCadam, K., "Russian Training Legend: Dr. Yuri Verkhoshansky." Retrieved online April 22, 2012 from http://www.pushtheground.com/2011/06/russian-traning-legend-dr-yuri.html Archived 2013-09-27 at the Wayback Machine
  15. 1 2 3 Michael Yessis (2000). Explosive Running. McGraw-Hill Companies, Inc.; 1st edition. ISBN   978-0809298990.
  16. 1 2 3 4 5 6 7 8 "Beginner's Guide to Plyometrics". Art of Manliness. 21 May 2010. Retrieved 11 April 2014.
  17. "ExRx.net : Pike Jump". exrx.net. Retrieved 2022-05-18.
  18. "How To Do Split Jumps". Get Healthy U | Chris Freytag. Retrieved 2022-05-18.
  19. A.S. Medvedev; V.V. Marchenko; S.V. Fomichenko (1983). "Speed-Strength Structure of Vertical Jumps by Qualified Weightlifters in Different Take-off Conditions (Condensed)". Soviet Sports Review International-Teoriya I Praktika Fizicheskoi Kultury. 19: 164–167.
  20. N.I. Volkov; V.M. Koryagin (1976). "Systematization of Special Basketball Exercises (Condensed)". Yessis Review of Soviet Physical Education and Sports. 13 #4: 110–111.
  21. N.A. Masalgin; Y.V. Verkhoshansky; L.L. Golovina; A.M. Naraliev (1987). "The Influence of the Shock Method of Training on the Electromyographic Parameters of Explosive Effort". Teoriya I Praktika Fizicheskoi Kultury (Theory and Practice of Physical Culture). 1: 45–46.
  22. 1 2 Yuri Verkhoshansky; Natalia Verkhoshansky (2011). Specialized Strength and Conditioning, Manual For Coaches. Verkhoshansky SSTM.
  23. Ebben, W. P.; Fauth, M.L.; Garceau, L.R.; Petrushek, E.J. (2011). "Kinetic quantification of plyometric exercise intensity". Journal of Strength and Conditioning Research. 25 (12): 3288–3298. doi: 10.1519/jsc.0b013e31821656a3 . PMID   22080319. S2CID   21797959.
  24. Beneka, A. G.; Malliou, P.K.; Missailidou, V.; Chatzinikolaou, A.; Fatouros, I.; Gourgoulis, V.; Georgiadis, E. (2012). "Muscle performance following an acute bout of plyometric training combined with low or high intensity weight exercise". Journal of Sports Sciences. 21: 1–9.
  25. Ebben, W. P.; Simenz, C.; Jensen, R.L. (2008). "Evaluation of plyometric intensity using electromyography". Journal of Strength and Conditioning Research. 22 (3): 861–868. doi: 10.1519/jsc.0b013e31816a834b . PMID   18438229. S2CID   207501404.
  26. Marc De Bremaeker (2013). Plyo-Flex. ISBN   978-1938585104.
  27. "Pros of the Plyometrics Workout". Alot Health. 2015-02-18. Retrieved 2016-05-18.
  28. Hansen, Derek, Kennelly, Steve, 'Equipment' in Plyometric Anatomy, Leeds: Human Kinetics, 2017
  29. Coombes, Jeff; Skinner, Tina. ESSA’s Student Manual for Health, Exercise and Sport Assessment. Mosby Australia. p. 565. ISBN   978-0729541428.{{cite book}}: CS1 maint: multiple names: authors list (link)
  30. Andrews, James; Harrelson, Gary; Wilk, Kevin. Physical Rehabilitation of the Injured Athlete. p. 583. ISBN   9781455737444.{{cite book}}: CS1 maint: multiple names: authors list (link)
  31. Swinned, Bram (2016). Strength Training for Soccer. New York: Routledge. p. 220. ISBN   978-1-315-66527-6.
  32. Fukada, David H. (2019). Assessments for Sport and Athletic Performance. Champaign: Human Kinetics. p. 6. ISBN   978-1-4925-5988-7.
  33. Kraemer, William J. Advanced Sports Conditioning for Enhanced Performance. IDEA Health & Fitness. p. 43. ISBN   978-1-887781-27-5.

Further reading