This article needs additional citations for verification .(February 2023) |
Poly(phthalaldehyde), abbreviated as PPA, is a metastable stimuli-responsive polymer first synthesized in 1967. [1] It has garnered significant attention during the past couple of years due to its ease of synthesis and outstanding transient and mechanical properties. [2] for this reason, It has been exploited for a variety of applications including sensing, drug delivery, and EUV lithography. As of 2023, it is considered the only aromatic aldehyde polymerized through a living chain growth polymerization. [3]
Poly(phthalaldehyde) was first reported in 1967 by Chuji Aso and Sanae Tagami from the department of Organic Synthesis at Kyushu University by an addition homopolymerization reaction of aromatic o-phthalaldehyde. [1] This polymer, consisting of a polyacetal main chain, is still to date, the only aromatic aldehyde that can be homopolymerized through a chain-growth polymerization method. It is a white brittle solid with a low ceiling temperature and significant self-immolative properties. [4] It has gathered significant attention in recent[ when? ] years especially in the development of novel responsive materials and applications.
Since its first inception in 1967, many synthesis techniques have been developed and employed for the polymerization of o-phthalaldehyde. Most notably, living polymerization methods are among the most common and promising techniques used, as can be seen in the high number of publications in the literature depicting their usage in poly(phthalaldehyde) preparation. [5]
Aso and Tagami were the first to report the polymerization of o-phthalaldehyde in 1967 using the cationic living polymerization technique. [1] This technique, which was initially thought to require the usage of a strong Brönsted acid to initiate polymerization in addition to a strong nucleophile to depress polymerization and endcap the polymer chain was proven successful in a number of polymerization processes reported earlier. [6] [7] [8] Interestingly, the authors were able to produce this polymer without using an initiator nor a terminator and determined the polymer's structure to be cyclic. In fact, they worked at liquid nitrogen temperature and relied on Boron trifluoride etherate catalyst which was sufficient to produce a polymer stable enough at room temperature for a few days.
In the following years, polymer chemists started studying the characteristics of this polymer and worked on enhancing its thermal stability and mechanical properties. [9] In particular, Moore and coworkers conducted rigorous mechanistic studies on poly(phthalaldehyde) by modifying the type of catalyst used, as well as the starting monomer concentration in an effort to control the molar mass, decrease the polydispersity index, and increase the polymer's purity. [10] Among the catalysts used were triethyloxonium borofluoride, tin chloride, and triphenylmethylium tetrafluoroborate.
While LCP was the first and sole method used to produce poly(phthalaldehyde), its usage nowadays has dramatically decreased in favor of other polymerization techniques which allow a better control over the polymer properties including molar mass and thermal stability.
While this polymerization technique did not typically gain fame and popularity until 2010, it was also reported by Aso and Tagami in 1969. [11] In general, LAP involves the usage of a strong nucleophile to initiate polymerization in addition to the employment of an electrophile as a terminator to endcap the polymer chain. [12] In Tagami's article, PPA was prepared by utilizing tert-butyllithium as an initiator and acetic anhydride as a terminator. [11] However, the drawbacks faced when utilizing LCP (low polydispersity index (PDI), low yield, and no control over molecular weight) were also encountered in this polymerization technique.
It was not until 1987 when two chemists, Hedrick and Schlemper, [13] from the University of Freiburg proposed the use of phosphazene bases to speed up the reaction and lower the polydispersity index. Up until 2023, three different phosphazene bases have been used in PPA polymerization. Moreover, most of the published research articles describing PPA synthesis between 2008 and 2023 revolve around the usage of LAP, rendering it the most common and effective polymerization technique.
The major advantage this polymerization technique presents over LCP lies in the fact that the polymer can be end capped on both sides of the chain with stimuli-responsive groups. [14] The tuning process of PPA by these functional groups have not only expanded the set of applications this polymer can be used in, but has also improved its properties and attributes. For instance, by controlling the o-phthalaldehyde monomer/alcohol initiator concentration ratio, ultra-high molecular weights (50-150 KDa) PPA can be obtained. [15] Furthermore, PPA synthesized through LAP is more thermally and mechanically stable. Generally, the presence of endcaps on both ends stabilizes the polymer and results in a more flexible chain with a high thermal stability. And because linear polymers synthesized by LAP method can be end capped whereas cyclic polymers prepared via LCP method cannot be end capped with functional groups, LAP results in more thermally stable polymers. It has a much lower PDI ranging between 1.3 and 1.9 as opposed to PPA synthesized through LCP which has a PDI ranging between 2 and 4.5. This is because of the ability to control the character, molecular weight, and end group of the polymer. [3] Furthermore, the initiator used in LAP synthesis method, which is a strong nucleophile, acts as the first endcap, and hence by controlling the amount of initiator used, a control over the molar mass and PDI can be obtained. This is in contrary to cyclic PPA which is synthesized through LCP where the initiator (Lewis acid) will not be part of the final PPA product, and hence, controlling the amount of Lewis acid used will have no to little effect on the final molar mass and PDI of cyclic PPA polymer.
Although a less known polymerization technique, coordinative polymerization has been used a few times in PPA preparation. It mostly requires the activation of transition metal catalysts with trimethylaluminum or diethyl aluminum chloride and allows a control over the stereoselectivity of the compound. [3] Another advantage of this technique lies within the usage of water as a co-catalyst in PPA synthesis which is deemed impossible in other polymerization methods. Professor Hisaya Tani from the Department of Polymer Science at Osaka University was the first to report a stereospecific polymerization of o-phthalaldehyde by employing dimeric dimethylaluminumoxybenzylideneaniline [Me2AlOCMeNPh]2 as catalyst and water as a co-catalyst. [16] He was able to synthesize a fibrous PPA in exclusively trans-configuration which had never been reported before. Nonetheless, due to the inability to endcap the polymer with functional groups, this technique is rarely utilized at present and the mechanism of formation of PPA remains ambiguous and not well studied.
Depending on the polymerization technique applied, two different types of poly(phthalaldehyde) can be acquired, linear and cyclic.
Linear PPA is produced by anionic polymerization methods using a strong nucleophile as an initiator. [17] This technique prevents the cyclization of the polymer chain as the propagating species have only one charged terminus that cannot backbite the other terminus which, in turn, is neutral in charge. Although processing linear PPA requires highly sensitive reaction conditions and is more time demanding, this type of polymer has many advantages over its cyclic counterpart. [18] For instance, a control over the polymer's molar mass can easily be achieved by controlling the monomer and alcohol initiator ratios. Furthermore, it has been proven to be more thermally stable than its cyclic counterpart due to the presence of functionalized endcaps that stabilizes the polymer chain from depolymerization. [19] For these reasons, it has been studied to a far greater extent than cyclic PPA. Various linear PPA with distinct end groups have been reported and studied for a variety of applications including sensing, drug delivery, and lithography. [15] For instance, once these end groups are cleaved as a response to the exposure of PPA to a specific stimulus, the polymer will sequentially disassemble from head to tail through an unzipping reaction to form the monomer in short times that can be as low as a few minutes.
Cyclic PPA is obtained through a cationic polymerization of o-phthalaldehyde using a Lewis acid, typically Boron trifluoride etherate, as an initiator. [20] When Aso and Tagami first reported the successful synthesis of PPA using this technique in 1967, [1] they were unaware of the fact that the polymer they prepared was cyclic and instead reported the structure as linear in their research paper. It was not until 2013 that polymer chemists proved that the structure is cyclic using a combination of characterization techniques including Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared Spectroscopy (FT-IR), Gel Permeation Chromatography (GPC), and Mass Spectrometry (MS). [10] Cyclic PPA is easy to synthesize; it is reported by Prof. Jeffrey Moore that the cationic polymerization of o-phthalaldehyde is very fast, yielding cyclic PPA within few minutes. [20] Furthermore, the polymer can be isolated without the addition of pyridine nor methanol nor a strong base terminator, which in general makes this polymerization technique easy, fast, and cheap. [21] Nevertheless, a known issue of this technique is the fact that the molecular weight cannot be controlled based on the initial concentration of the monomer used, which has led typically to cyclic PPA with a wide variety of molecular weights ranging between 3 kDa to 100 kDa using the same starting conditions. Furthermore, because of its cyclic structure, no end caps are used or needed. The absence of functionalized end caps in the structure has limited the usage of cyclic PPA especially in stimuli responsive applications. [22]
PPA is a metastable polymer known for its ease of synthesis and rapid depolymerization. In addition, its properties can be easily influenced and manipulated upon either functionalizing the phthalaldehyde monomer with different groups, most efficiently, electron withdrawing groups, or employing different functional groups as end caps.3
PPA is known to have a rigid and brittle backbone which limits its flexibility and usage in some applications. However, it can be easily tuned by adding additives rendering it a soft material. [23] The mechanical properties of cyclic PPA films drop cast using different solvents have recently been investigated. [22] The study showed the polymer to possess a large elastic modulus of 2.5-3 GPa which was also previously reported in another study, in addition to tensile strength values ranging between 25 and 35 MPa and a failure strain of 1-1.5% that is highly dependent of the solvent used. [9]
With the insurgence in the usage of PPA during the past few years for various applications, the need to ameliorate the transient properties and enhance the mechanical features of this polymer has come to surface. PPA is known to be brittle; it possesses a large storage modulus, and a glass transition temperature that is above its thermal degradation point, which renders the polymer unsuitable for a broad range of applications. [9] One way to ameliorate its intrinsic properties is via the addition of a plasticizing agent that can disrupt the polymer's intermolecular packing, and thus making it more flexible, decreasing its storage modulus, depressing its glass transition temperature, and increasing its shear strength. [2] A few examples of plasticizers that have been used with PPA include dimethyl phthalate, bis(2-ethylhexyl) phthalate, diethyl adipate, and tri-isononyl trimellitate (TINTM). In a recent study, the effect of two ether-ester plasticizers on the mechanical flexibility and photo-transience speed of cyclic PPA was investigated. [9] The authors were able to show that the addition of these additives broadened the storage modulus range and decreased it from 2300 MPa in the case of pure PPA down to 19 MPa in the PPA/plasticizer mixture, hence making the polymer more flexible and in need of less energy to be distorted. [9] In another study published by the same research group, the effect of diethyl adipate (DEA) plasticizer on the glass transition temperature of cyclic PPA was investigated. [2] After determining the glass transition temperature of pure PPA to be 187 °C, PPA films with various DEA concentrations were prepared. By varying DEA concentration, the authors were able depress Tg to 12.5 °C demonstrating the importance of plasticizers in enhancing the mechanical flexibility and thermal properties of PPA. Similar results were previously observed where the thermal transitions were depressed from 95 °C for cPPA to 24 °C for diethyl phthalate (DEP)-plasticized cPPA. [20] Among the few studies that have been reported on the usage of plasticizers with PPA, it has been noted that the usage of plasticizers results in a decrease in the tensile stress of the polymers which indicate that PPA is becoming more flexible and hence the film can fold more easily. Nevertheless, a control on the amount of plasticizer used is important. For instance, in the study discussed above, it has been reported that the usage of a large amount of plasticizer (more than 50% w/w in comparison with PPA polymer) results in phase segregation and a decrease in the flexibility of the PPA film. [9] Furthermore, the nature of the used solvent can highly affect the mechanical properties of PPA as well. In particular, in another study published in 2019, both the elastic modulus and tensile strength increase when dichloromethane was used as a solvent to drop-cast PPA in comparison to dioxane and chloroform. [22]
The thermal stability of PPA is highly dependent on whether the polymer is end-capped or isolated without end groups. Cyclic PPA, in addition to functionalized linear PPA chains are known to be thermally stable for up to 150oC as determined by both Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). [24] Moreover, the polymer is known for its long-term shelf life wherein it can be stored at room-temperature for a significant amount of time. [24] Various chemists have studied substitution effects on the thermal stability of PPA. For instance, scientists at The International Business Machines Corporation (IBM) concluded, after extensive studies, that o-phthalaldehyde monomers functionalized with chloro, bromo, and 4-trimethylsilyl functional groups result in highly stable PPA compared to the unsubstituted polymer. [25] [26] Similarly, Phillips et al. proved that the substituted and end-capped poly(4,5-dichlorophthalaldehyde) possesses higher thermal degradation temperatures than its unsubstituted counterparts. [27]
By means of controlling the identity and reactivity of the endcaps, PPA can withstand harsh chemical conditions with no significant changes in its structure. For instance, while functionalizing PPA with an allyl acetate and tert-butyldimethylsilyl ether functional groups can lead to its rapid depolymerization in the presence of Pd(0) and F- respectively, a simple change in the nature of the endcaps will preserve the chain even in the presence of both corrosive agents. [28] On a separate note, while PPA is insoluble in aqueous solvents and alcohols, it is highly soluble in organic solvents such as THF, DCM, and DMSO where it can be dissolved for days without triggering depolymerization. [10]
Due to its unique[ editorializing ] stability, chemical properties, and outstanding tunability and reactivity, PPA has been employed in a variety of applications.
The high solubility and stability of PPA in organic solvents have allowed its investigation as a base material in first generation amplified photoresist for lithography in the early 80s by three scientists, Grant Willson, Jean Fréchet, and Hiroshi Ito who were working at IBM at the time. The story of how this successful achievement started and progressed can be found in the review paper written by Hiroshi Ito. [29] Because PPA by itself does not undergo complete depolymerization upon its subjection to light, it is usually end-capped or used along photoacid generators (PAGs) for enhanced sensitivity. [3] In this case, depolymerization is triggered upon irradiation either by end-cap removal and self-immolation or by the generated acid. Ober et al. stated that the use of PPA as photoresist under extreme ultraviolet (EUV) irradiation is yet to be successful due to the instability of PPA and the volatility of its monomers.30 However, they were able to report one of the first PPA derivatives without the use of PAGs with enhanced photoresist properties upon EUV exposure.19
Owing to its high reactivity and the ability to tune its endcap groups, PPA has been lately utilized in drug delivery applications. In one recent study, UV-sensitive PPA microcapsules containing different types of drugs were prepared. [30] Once the capsules were subjected to a UV-light trigger, an unzipping reaction took place and the shell ruptured which led to the release of the core contain of these microcapsules. A unique advantage of these microcapsules is that they allow the immediate release of the drug upon exposure to the trigger rather than its continuous release over a period of time ranging from minutes to hours as other common microcapsules function. [31] In an earlier publication, DiLauro et al. reported the ability to predesign and control the thickness of the microcapsule shells and length of the PPA used to form the shell, which have stimuli-responsive endcaps allowing head-to-tail fluoride-triggered depolymerization. [32]
PPA is known as a self-immolative material which depolymerizes through endcap cleavage in response to a specific stimulus. For this reason, several PPA polymers with different endcaps have been synthesized and used as self-immolative materials for sensing toxic and specific compounds.
Due to the presence of two types of oxygen atoms in the PPA backbone, in addition to the fact that H+ tends to protonate oxygen atoms easily, depolymerization can occur through both endcap cleavage and protonation of oxygen atoms present in the backbone. For this reason, polymer chemists tend to use endcaps rich in oxygen atoms to accelerate depolymerization rate. For example, Moore and co-workers reported the use of a specific ion coactivation (SICA) effect that allowed the ion and acid coactivated-triggered depolymerization of a cyclic PPA microcapsules at the solid/liquid interface of the polymer and solution. [33]
Silyl groups can be deprotected with fluoride ions resulting in a strong Si-F bond that is hard and challenging to break. For this reason, different polymer chemists started to employ PPA in fluoride sensing by using t-butyldimethylsily l (TBS) containing initiators and terminators. The fluoride sensing ability of PPA has been previously used in applications such as drug release, as previously reported by DiLauro et al. [32] Another application studied by Phillips and co-workers includes the use of fluoride-triggered PPA depolymerization in changing the structure of plastics in a predetermined way. [34]
To demonstrate its capability in rapidly depolymerizing in presence of UV-light, DiLauro et al. synthesized a PPA polymer with two UV-sensitive endcaps, 2-nitro-4,5-dimethoxybenzyl alcohol and 1-[[(chlorocarbonyl)oxy]methyl]-4,5-dimethoxy-2 nitrobenzene, and were able to achieve complete depolymerization in a few minutes. [15] In a practical application in organic electronics, cyclic PPA in the presence of 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine (MBTT used as PAG) undergoes depolymerization upon exposure to UV-light, which in turn deactivates the transient electronics. [35] Another similar application in transient electronics was reported where an organic light-emitting diode (OLED) was integrated on the PPA substrate and can cause depolymerization in the presence of a PAG. [36]
Apart from its usage in sensing acids and fluoride anions, PPA has been used in sensing Pd(0) metal by employing allyl chloroformate as a terminating end cap. This has been reported by Phillips and his research group, where they used an allyl formate endcap that stoichiometrically depolymerized within minutes upon its exposure to a catalytic amount of tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4). [34]
According to the safety data sheet of PPA, it should not be allowed in contact with the skin or eyes as it may lead to skin, eye, and respiratory irritations or allergic reactions. In addition, as some unfunctionalized PPA are unstable at temperatures even lower than room temperature, it is important to note that PPA should be stored at temperatures below -10 °C under inert atmosphere and away from sunlight, moisture, and heat, but with proper ventilation.
Since the depolymerization of PPA is greatly studied in its applications, it is important to also note the possible safety concerns of its monomer. In addition to the abovementioned hazards of PPA, phthalaldehyde is very toxic if swallowed and for aquatic life.
In polymer chemistry, living polymerization is a form of chain growth polymerization where the ability of a growing polymer chain to terminate has been removed. This can be accomplished in a variety of ways. Chain termination and chain transfer reactions are absent and the rate of chain initiation is also much larger than the rate of chain propagation. The result is that the polymer chains grow at a more constant rate than seen in traditional chain polymerization and their lengths remain very similar. Living polymerization is a popular method for synthesizing block copolymers since the polymer can be synthesized in stages, each stage containing a different monomer. Additional advantages are predetermined molar mass and control over end-groups.
In polymer chemistry, ring-opening polymerization (ROP) is a form of chain-growth polymerization in which the terminus of a polymer chain attacks cyclic monomers to form a longer polymer. The reactive center can be radical, anionic or cationic. Some cyclic monomers such as norbornene or cyclooctadiene can be polymerized to high molecular weight polymers by using metal catalysts. ROP is a versatile method for the synthesis of biopolymers.
Microencapsulation is a process in which tiny particles or droplets are surrounded by a coating to give small capsules, with useful properties. In general, it is used to incorporate food ingredients, enzymes, cells or other materials on a micro metric scale. Microencapsulation can also be used to enclose solids, liquids, or gases inside a micrometric wall made of hard or soft soluble film, in order to reduce dosing frequency and prevent the degradation of pharmaceuticals.
Chain-growth polymerization (AE) or chain-growth polymerisation (BE) is a polymerization technique where unsaturated monomer molecules add onto the active site on a growing polymer chain one at a time. There are a limited number of these active sites at any moment during the polymerization which gives this method its key characteristics.
End groups are an important aspect of polymer synthesis and characterization. In polymer chemistry, they are functional groups that are at the very ends of a macromolecule or oligomer (IUPAC). In polymer synthesis, like condensation polymerization and free-radical types of polymerization, end-groups are commonly used and can be analyzed by nuclear magnetic resonance (NMR) to determine the average length of the polymer. Other methods for characterization of polymers where end-groups are used are mass spectrometry and vibrational spectrometry, like infrared and raman spectroscopy. These groups are important for the analysis of polymers and for grafting to and from a polymer chain to create a new copolymer. One example of an end group is in the polymer poly(ethylene glycol) diacrylate where the end-groups are circled.
In polymer chemistry, free-radical polymerization (FRP) is a method of polymerization by which a polymer forms by the successive addition of free-radical building blocks. Free radicals can be formed by a number of different mechanisms, usually involving separate initiator molecules. Following its generation, the initiating free radical adds (nonradical) monomer units, thereby growing the polymer chain.
In polymer chemistry, anionic addition polymerization is a form of chain-growth polymerization or addition polymerization that involves the polymerization of monomers initiated with anions. The type of reaction has many manifestations, but traditionally vinyl monomers are used. Often anionic polymerization involves living polymerizations, which allows control of structure and composition.
Polylactic acid, also known as poly(lactic acid) or polylactide (PLA), is a thermoplastic polyester with backbone formula (C
3H
4O
2)
n or [–C(CH
3)HC(=O)O–]
n, formally obtained by condensation of lactic acid C(CH
3)(OH)HCOOH with loss of water. It can also be prepared by ring-opening polymerization of lactide [–C(CH
3)HC(=O)O–]
2, the cyclic dimer of the basic repeating unit.
Sodium polyacrylate (ACR, ASAP, or PAAS), also known as waterlock, is a sodium salt of polyacrylic acid with the chemical formula [−CH2−CH(CO2Na)−]n and has broad applications in consumer products. This super-absorbent polymer (SAP) has the ability to absorb 100 to 1000 times its mass in water. Sodium polyacrylate is an anionic polyelectrolyte with negatively charged carboxylic groups in the main chain. It is a chemical polymer made up of chains of acrylate compounds. It contains sodium, which gives it the ability to absorb large amounts of water. When dissolved in water, it forms a thick and transparent solution due to the ionic interactions of the molecules. Sodium polyacrylate has many favorable mechanical properties. Some of these advantages include good mechanical stability, high heat resistance, and strong hydration. It has been used as an additive for food products including bread, juice, and ice cream.
Reversible addition−fragmentation chain-transfer or RAFT polymerization is one of several kinds of reversible-deactivation radical polymerization. It makes use of a chain-transfer agent (CTA) in the form of a thiocarbonylthio compound to afford control over the generated molecular weight and polydispersity during a free-radical polymerization. Discovered at the Commonwealth Scientific and Industrial Research Organisation (CSIRO) of Australia in 1998, RAFT polymerization is one of several living or controlled radical polymerization techniques, others being atom transfer radical polymerization (ATRP) and nitroxide-mediated polymerization (NMP), etc. RAFT polymerization uses thiocarbonylthio compounds, such as dithioesters, thiocarbamates, and xanthates, to mediate the polymerization via a reversible chain-transfer process. As with other controlled radical polymerization techniques, RAFT polymerizations can be performed under conditions that favor low dispersity and a pre-chosen molecular weight. RAFT polymerization can be used to design polymers of complex architectures, such as linear block copolymers, comb-like, star, brush polymers, dendrimers and cross-linked networks.
A photopolymer or light-activated resin is a polymer that changes its properties when exposed to light, often in the ultraviolet or visible region of the electromagnetic spectrum. These changes are often manifested structurally, for example hardening of the material occurs as a result of cross-linking when exposed to light. An example is shown below depicting a mixture of monomers, oligomers, and photoinitiators that conform into a hardened polymeric material through a process called curing.
Self-healing materials are artificial or synthetically created substances that have the built-in ability to automatically repair damages to themselves without any external diagnosis of the problem or human intervention. Generally, materials will degrade over time due to fatigue, environmental conditions, or damage incurred during operation. Cracks and other types of damage on a microscopic level have been shown to change thermal, electrical, and acoustical properties of materials, and the propagation of cracks can lead to eventual failure of the material. In general, cracks are hard to detect at an early stage, and manual intervention is required for periodic inspections and repairs. In contrast, self-healing materials counter degradation through the initiation of a repair mechanism that responds to the micro-damage. Some self-healing materials are classed as smart structures, and can adapt to various environmental conditions according to their sensing and actuation properties.
Methyl trifluoromethanesulfonate, also commonly called methyl triflate and abbreviated MeOTf, is the organic compound with the formula CF3SO2OCH3. It is a colourless liquid which finds use in organic chemistry as a powerful methylating agent. The compound is closely related to methyl fluorosulfonate (FSO2OCH3). Although there has yet to be a reported human fatality, several cases were reported for methyl fluorosulfonate (LC50 (rat, 1 h) = 5 ppm), and methyl triflate is expected to have similar toxicity based on available evidence.
Poly(N-isopropylacrylamide) (variously abbreviated PNIPA, PNIPAM, PNIPAAm, NIPA, PNIPAA or PNIPAm) is a temperature-responsive polymer that was first synthesized in the 1950s. It can be synthesized from N-isopropylacrylamide which is commercially available. It is synthesized via free-radical polymerization and is readily functionalized making it useful in a variety of applications.
In polymer chemistry, cationic polymerization is a type of chain growth polymerization in which a cationic initiator transfers charge to a monomer, which then becomes reactive. This reactive monomer goes on to react similarly with other monomers to form a polymer. The types of monomers necessary for cationic polymerization are limited to alkenes with electron-donating substituents and heterocycles. Similar to anionic polymerization reactions, cationic polymerization reactions are very sensitive to the type of solvent used. Specifically, the ability of a solvent to form free ions will dictate the reactivity of the propagating cationic chain. Cationic polymerization is used in the production of polyisobutylene and poly(N-vinylcarbazole) (PVK).
In polymer chemistry, graft polymers are segmented copolymers with a linear backbone of one composite and randomly distributed branches of another composite. The picture labeled "graft polymer" shows how grafted chains of species B are covalently bonded to polymer species A. Although the side chains are structurally distinct from the main chain, the individual grafted chains may be homopolymers or copolymers. Graft polymers have been synthesized for many decades and are especially used as impact resistant materials, thermoplastic elastomers, compatibilizers, or emulsifiers for the preparation of stable blends or alloys. One of the better-known examples of a graft polymer is a component used in high impact polystyrene, consisting of a polystyrene backbone with polybutadiene grafted chains.
Single Chain Cyclized/Knotted Polymers are a new class of polymer architecture with a general structure consisting of multiple intramolecular cyclization units within a single polymer chain. Such a structure was synthesized via the controlled polymerization of multivinyl monomers, which was first reported in Dr. Wenxin Wang's research lab. These multiple intramolecular cyclized/knotted units mimic the characteristics of complex knots found in proteins and DNA which provide some elasticity to these structures. Of note, 85% of elasticity in natural rubber is due to knot-like structures within its molecular chain.
An intramolecular cyclization reaction is where the growing polymer chain reacts with a vinyl functional group on its own chain, rather than with another growing chain in the reaction system. In this way the growing polymer chain covalently links to itself in a fashion similar to that of a knot in a piece of string. As such, single chain cyclized/knotted polymers consist of many of these links, as opposed to other polymer architectures including branched and crosslinked polymers that are formed by two or more polymer chains in combination.
Depolymerizable polymers or Low-Ceiling Temperature Polymers refer to polymeric materials that can undergo depolymerization to revert the materials to their monomers at relatively low temperatures, such as room temperature. For example, the ceiling temperature Tc for formaldehyde is 119 °C, and that for acetaldehyde is -39 °C.
Parisa Mehrkhodavandi is a Canadian chemist and Professor of Chemistry at the University of British Columbia (UBC). Her research focuses on the design of new catalysts that can effect polymerization of sustainably sourced or biodegradable polymers.
Polyoxetane (POX), or poly(oxetane), is synthetic organic heteroatomic thermoplastic polymer with molecular formula (–OCH2CH2CH2–)n. It is polymerized from oxetane monomer, which is a four-membered cyclic ether.
{{cite book}}
: CS1 maint: location missing publisher (link){{cite book}}
: CS1 maint: location missing publisher (link){{cite book}}
: CS1 maint: others (link){{cite book}}
: CS1 maint: others (link)