Polybioides tabidus

Last updated

Polybioides tabidus
Scientific classification Red Pencil Icon.png
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Hymenoptera
Family: Vespidae
Subfamily: Polistinae
Tribe: Ropalidiini
Genus: Polybioides
Species:
P. tabidus
Binomial name
Polybioides tabidus
(Fabricius, 1781)
Synonyms

Polybia bucula Buysson, 1902
Polybia isabellina Schulthess, 1913

Contents

The African swarm-founding wasp, Polybioides tabidus, is a social paper wasp from the order Hymenoptera that is typically found in Central Africa. [1] This wasp is unique in that it exhibits cyclical oligogyny, meaning queen number varies with colony cycle. After several generations of production of workers and future queens, a subset of many workers and queens leave the original colony to begin a new one. The new colony does not produce new queens until current queens from the old colony have died. [2] P. tabidus has been observed to display both predator and scavenger behavior, depending on the food sources available. [3]

Taxonomy and phylogeny

Polybioides tabidus is a member of the subfamily Polistinae, which exclusively contains social wasps. Four tribes make up Polistinae: Polistini, Epiponini, Mischocyttarini, and Ropalidiini. [4] Out of the three swarm-founding groups of wasps, two are found in the tribe Ropalidiini—the genus Polybioides and some wasps of the genus Ropalidia —and the third swarm-founding group includes the tribe Epiponini. [2] The genus Polybioides is most closely related to Belonogaster based on a phylogenetic tree. [2] [5]

P. tabidus was originally described by Johan Christian Fabricius in 1781 as (Vespa tabida) and has two other taxonomic synonyms (subsequently named species later found to be identical to P. tabidus): Polybia bucula named in 1902 by Du Buysson and Polybia isabellina named by Schulthess in 1913. [6] [7]

Description and identification

Caste differences in queens and workers

There is a distinct difference in morphological characteristics between queens and workers. Queens have long bristles on their heads—specifically their eyes, vertex, and antennae—and on their thorax. [1] The workers' bristles on their heads and thoraces are much shorter than the queen's. Leg and wing bristles of workers and queens are comparable in length. Queens typically have longer wings and larger metasomal segments. [1] It is suggested that reproductive ability may be possible in both castes, as some workers have been observed to possess developed ovaries. [1]

Nest structure

The nests of P. tabidus are relatively small, especially when compared to its Old World relative Polybioides melainus. [6] Nests typically contain hexagonal cells arranged into multiple vertical combs, which are aligned adjacent to each other. The combs are not attached to each other, but a thin envelope encases the combs into a unit. [6] The top of the entire unit is attached to the bottom of a branch while the bottom can freely hang. The closed sides of the two central combs are oriented toward each other, and the entrances to each comb are toward the bottom of the nest. [6]

Distribution and habitat

Like all other wasps of the tribe Ropalidiini, P. tabidus is distributed in the Old World. [4] P. tabidus is mainly found in the forest areas of tropical Central Africa. P. tabidus has been studied in Cameroon and Western Kenya, namely the Kakamega Forest Reserve. [1] [6] [8] [9]

Colony cycle

The colony cycle begins when a swarm of multiple queens and hundreds of workers leave their original colony and found a new colony. [10] Due to the environment, P. tabidus queens do not need to overwinter, and colonies can be perennial and large—mature colonies can have anywhere from 2,000 to 6,000 workers. [5] [10] Large colony size decreases the risk of predation associated with nest initiation. [5]

Behavior

Swarm-founding

For swarm-founding to occur, wasps must be able to follow the path of wasps before them. In swarm-founding species, workers rub their gasters in distinct movements on objects along the route of their path. [5] In some swarm-founding species, workers release glandular secretions which coordinate swarming by attracting the wasps that follow. Although P. tabidus lacks these sternal glands, workers still rub their gasters and are capable of following worker trails. [5] Swarm-founding allows colonies to be larger and have more longevity relative to independent-founding colonies. [5] Where swarm founders and independent founders coexist, which is the case in some areas of the New World, swarm founders tend to dominate due to better division of labor. [5]

Cooperation

The degree of relatedness between workers and queens influences the amount of positive cooperation within the colony. When workers and queens are more related, there is more cooperation. [8] Thus, the process of limited queen production—cyclical oligogyny—maintains cooperation in P. tabidus by making workers more related than would be expected in a typical colony of multiple queens. [8] Workers are more inclined to limit their own reproduction and focus on helping their relatives reproduce if the relatives share a high proportion of the workers’ genes. Workers are promoting the propagation of their own genes when they help close relatives reproduce.

Kin selection

Genetic relatedness within colonies

The typical Hymenopteran haplo-diploid genetic system of relatedness—where females share a 0.75-degree of relatedness with their sisters and only a 0.50-degree with their brothers—is not found in P. tabidus. [8] Hamilton's rule of haplodiploidy is not followed in this species, as queens do not mate singly. Workers are more related than would be expected in multiple queen colonies due to a process of queen production called cyclical oligogyny, where daughter queens are often full sisters. [8] According to kin selection theory, individuals who act altruistically are selected when the ratio of the cost of the fitness of the giver to the benefit of recipient is less than the degree of relatedness between the two individuals. [11] Workers of P. tabidus share elevated relatedness and, thus, benefit through cooperation in aiding relatives and swarm-founding.

Cyclical oligogyny

P. tabidus exhibits cyclical oligogyny, where queen number varies with colony cycle. After several generations of production of workers and future queens, a subset of many workers and queens leave the original colony to begin a new colony. The number of queens in a colony must be reduced to one or a few queens before new queens are produced. [8] Thus, new queens share a high degree of relatedness, increasing the relatedness of their progeny. [12] Cyclical oligogyny is maintained by worker control of sex ratios. [8] When there is only one or a few queens, workers are three times as related to females as they are to males. However, when there are more queens, workers are equally related to males and females. As a result, workers prefer to produce new queens when colonies have few queens and males when colonies have many queens. [8] Cyclical oligogyny has evolved independently in the Neotropical epiponine swarm-founding wasps, such as Polybia emaciata . [8] [12]

Possible costs of cyclical oligogyny

Having a limited number of queens in a colony increases the risks associated with queen loss. [8] This cost is not as great when more queens can easily be produced to replace the queens lost. However, it is suggested that caste determination in P. tabidus occurs early in development. Thus, queens are typically the only females that have reproductive ability. A consequence of limited reproductive ability is that queens are not easily replaced. [8] Another cost of cyclical oligogyny is reproductive efficiency. P. tabidus queens have three ovarioles, Compared to single-queen Vespa colonies of similar size where queens have up to twelve ovarioles. [8] This makes brood production difficult when there is only one queen. However, this case is rare and is therefore not detrimental toward reproductive fecundity. Reduced queen number typically occurs in a new swarm. Mature swarms are large and have many queens that produce males and new swarms. [8]

Worker control and policing

Workers are more related to their own sons than to the queen's sons. [10] However, workers are more related to the queen's sons than sons of other workers. This is because swarm-founding colonies are typically large and have multiple queens, making workers more related to queens than other workers. [5] Because of the difference in degree of relatedness, a worker would be more inclined to care for the queen’s sons than to a son of another worker. [10] Worker policing effectively preserves the collective interests of the colony by controlling the production of males within a colony and limiting male production to only the queen. Another situation of worker policing is found in cyclical oligogyny, where males are only produced when there are multiple queens in the colony and workers are equally related to males and females. [8] Workers typically participate in worker policing when the degree of relatedness between workers is relatively low.

Interaction with other species

Nesting association

Nests of Polybioides tabidus are found to be attractive nesting sites for seven species of small birds in Yaoundé, Cameroon—including the spectacled weaver (Ploceus ocularis), and the common fiscal (Lanius collaris). [13] [9] Smaller birds, such as the spectacled weaver, are found in closer proximity to nests than the common fiscal and other larger birds. The difference in distance of association between small and large birds is due to the fact that larger birds would be more likely to perturb a wasp nest when it lands on a proximal branch. [9]

Predation and pest control

P. tabidus workers display scavenger behaviors when they are presented with dead animals, such as vertebrates, while foraging. [3] Workers can also act as predators, especially toward competitors for desired food sources. Workers choose between carrion and fruit food sources depending on availability. [3] As a consequence of the preferred diet of P. tabidus—food sources high in sugar or protein—workers must come in contact with many other scavengers, such as the aphid Toxoptera citridus. T. citridus is a known citrus pest, so this interspecies interaction suggests that P. tabidus could be an agent in pest control. [3]

Related Research Articles

Polistinae Subfamily of insects

The Polistinae is a subfamily of eusocial wasps belonging to the family Vespidae. They are closely related to the more familiar wasps and true hornets of the subfamily Vespinae, containing four tribes. With about 1,100 species total, it is the second-most diverse subfamily within the Vespidae, and while most species are tropical or subtropical, they include some of the most frequently encountered large wasps in temperate regions.

<i>Polistes annularis</i> Species of wasp

Polistes annularis is a species of paper wasp found throughout the eastern half of the United States. This species of red paper wasp is known for its large size and its red-and-black coloration and is variably referred to as a ringed paper wasp or jack Spaniard wasp. It builds its nest under overhangs near bodies of water that minimize the amount of sunlight penetration. It clusters its nests together in large aggregations, and consumes nectar and other insects. Its principal predator is the ant, although birds are also known to prey on it. Unlike other wasps, P. annularis is relatively robust in winter conditions, and has also been observed to store honey in advance of hibernation. This species has also been used as a model species to demonstrate the ability to use microsatellite markers in maternity assignment of social insects.

<i>Polistes fuscatus</i> Species of insect

Polistes fuscatus, whose common name is the dark or northern paper wasp, is widely found throughout southern Canada, the United States, Mexico, and Central America. It often nests around human development. However, it greatly prefers areas in which wood is readily available for use as nest material, therefore they are also found near and in woodlands and savannas. P. fuscatus is a social wasp that is part of a complex society based around a single dominant queen along with other cofoundresses and a dominance hierarchy.

<i>Polistes exclamans</i> Species of wasp

Polistes exclamans, the Guinea paper wasp, is a social wasp and is part of the family Vespidae of the order Hymenoptera. It is found throughout the United States, Mexico, the Bahamas, Jamaica and parts of Canada. Due to solitary nest founding by queens, P. exclamans has extended its range in the past few decades and now covers the eastern half of the United States, as well as part of the north. This expansion is typically attributed to changing global climate and temperatures. P. exclamans has three specific castes, including males, workers, and queens, but the dominance hierarchy is further distinguished by age. The older the wasp is, the higher it is in ranking within the colony. In most P. exclamans nests, there is one queen who lays all the eggs in the colony. The physiological similarities between the worker and queen castes have led to experiments attempting to distinguish the characteristics of these two castes and how they are determined, though males have easily identifiable physiological characteristics. Since P. exclamans live in relatively small, open combed nests, they are often subject to predators and parasites, such as Chalcoela iphitalis, Elasmus polistis, and birds. P. exclamans have defense and recognition strategies that help protect against these predators and parasites.

<i>Polybia occidentalis</i> Species of wasp

Polybia occidentalis, commonly known as camoati, is a swarm-founding advanced eusocial wasp. Swarm-founding means that a swarm of these wasps find a nesting site and build the nest together. This species can be found in Central and South America. P. occidentalis preys on nectar, insects, and carbohydrate sources, while birds and ants prey on and parasitize them. P. occidentalis workers bite each other to communicate the time to start working.

<i>Polistes bellicosus</i> Species of insect

Polistes bellicosus is a social paper wasp from the order Hymenoptera typically found within Texas, namely the Houston area. Like other paper wasps, Polistes bellicosus build nests by manipulating exposed fibers into paper to create cells. P. bellicosus often rebuild their nests at least once per colony season due to predation.

<i>Protonectarina</i> Genus of wasps

Protonectarina sylveirae, commonly referred to as the Brazilian wasp, is a neotropical swarm-founding wasp species that ranges widely across South America. This species relies heavily on the consumption of animal protein rather than nectar. P. sylveirae preys heavily on agricultural pests to coffee crops, keeping pest populations low.

<i>Ropalidia revolutionalis</i> Species of wasp

Ropalidia revolutionalis Ropalidia revolutionalis, the small brown paper wasp, is a diurnal social wasp of the family Vespidae. They are known for the distinctive combs they make for their nests, and they are mostly found in Queensland, Australia in the areas of Brisbane and Townsville. They are an independent founding wasp species, and they build new nests each spring. They can be helpful because they control insect pests in gardens. However, if threatened, they will sting humans and cause large amounts of pain.

<i>Leipomeles dorsata</i> Species of wasp

Leipomeles dorsata is a neotropical paper wasp that is found across Central America and northern South America. It is a eusocial wasp with little differentiation between reproducing and non-reproducing females. In fact, workers can become temporary reproductives if the main reproductives are killed, allowing reproduction to continue until the main reproductive population recovers. The colony cycles through different ratios of main reproductive females and subordinate reproductive females, starting with few or no primary reproducing females, and increasing until there are only main reproductives.

Protopolybia exigua is a species of vespid wasp found in South America and Southern Brazil. These neotropical wasps, of the tribe Epiponini, form large colonies with multiple queens per colony. P. exigua are small wasps that find nourishment from nectar and prey on arthropods. Their nests are disc-shaped and hang from the undersides of leaves and tree branches. This particular species of wasp can be hard to study because they frequently abandon their nests. P. exigua continuously seek refuge from phorid fly attacks and thus often flee infested nests to build new ones. The wasps' most common predators are ants and the parasitoid phorid flies from the Phoridae family.

<i>Polybia sericea</i> Species of wasp

Polybia sericea is a social, tropical wasp of the family Vespidae that can be found in South America. It founds its colonies by swarming migrations, and feeds on nectar and arthropods.

Polybioides raphigastra is a species of social wasp found in the forests of South East Asia and Indonesia. It has recently been placed in the tribe Ropalidiini. This species is known for the downward-spiraling shape of their nests, and for having colony sizes exceeding ten thousand members.

Polybia emaciata is a Neotropical swarm founding wasp that is mainly found in South America. This eusocial species has a unique colony structure in which multiple queens are present. Workers and queens are not morphologically distinct, but the high amount of relatedness maintained in the colony ensures that workers police each other. Polybia emaciata relies on a diet of liquid nectars which is supplemented with prey insects, particularly flies. It is well known for being one of only three wasp species in the genus Polybia that uses mud as the primary material for building its nest. Polybia emaciata is one of the least aggressive wasp species in the genus Polybia, and is known for its distinctive defensive behavior.

<i>Ropalidia romandi</i> Species of wasp

Ropalidia romandi, also known as the yellow brown paper wasp or the yellow paper wasp. is a species of paper wasp found in Northern and Eastern Australia. R. romandi is a swarm-founding wasp, and manages perennial nests. Its nests are known as 'paper bag nests' and have different architectural structures, depending on the substrates from which they are built. The specific name honors Gustave, baron de Romand, a prominent French political figure and amateur entomologist.

Synoeca surinama is a Neotropical swarm-founding wasp of the tribe Epiponini. It is known for its metallic blue and black appearance and painful sting. S. surinama builds nests on tree trunks and can be found in tropical climates of South America. When preparing to swarm, there are a number of pre-swarming behaviors that members of S. surinama colonies partake in, such as buzzing runs and occasional brood cannibalism. In S. surinama, social environmental conditions determine the caste ranks of individuals in the developing brood. Unlike less primitive Hymenoptera species, S. surinama display little morphological variation between egg laying queens and workers. S. surinama wasps visit flowering plants and are considered pollinators. When these wasps sting, the stinger is left in the victim and the wasp ultimately dies.

<i>Synoeca septentrionalis</i> species of stinging wasp

Synoeca septentrionalis is one of five species of wasps in the genus Synoeca. It is a swarm-founding wasp that is also eusocial, exhibiting complicated nest structure and defense mechanisms and a colony cycle including a pre-emergence phase and a post-emergence phase. It is typically found in areas from Central to South America. This wasp is one of the larger species of paper wasps and exhibits multiple morphological adaptations as a result of this. S. septentrionalis is known for possessing a very painful sting.

Agelaia multipicta is a swarm-founding, highly eusocial wasp that lives in Mexico, Argentina, Trinidad and southern Brazil. It nests in natural cavities such as hollow trees and aggressively defends the nest from ants, who are brood predators. The workers and queens are morphologically distinguished by ovarian development as well as external features such as a larger petiole and gaster in the queen. Like other carrion-eating (necrophagous) wasp species, A. multipicta plays a scavenging role in the ecosystem. Agelaia multipicta was described by the Irish entomologist Alexander Henry Haliday in 1836.

Parachartergus colobopterus is an epiponine social wasp belonging to the subfamily Polistinae. This species can be found through Central and South America and is unique because its colonies contain multiple queens. However, relatedness among nest mates remains relatively high as a result of cyclical oligogyny, which is a system where the number of queens varies over time. Because workers and queens do not demonstrate any significant morphological differentiation, individuals of this species are totipotent, capable of differentiation into any caste, because caste is not genetically determined. Relatedness and conflict therefore play a major role in determining the dominance hierarchy and behavioral patterns of this wasp species, especially the behavior of worker policing. Another unique characteristic of this wasp is that it is generally a docile species: when the nest is continuously provoked, the colony members will leave the nest instead of mounting an attack.

<i>Mischocyttarus mexicanus cubicola</i> Subspecies of wasp

Mischocyttarus mexicanus cubicola is a neotropical paper wasp found in the New World. It is a social wasp that demonstrates two different types of nesting strategies, depending upon context. This context-dependent trait makes Mischocyttarus mexicanus cubicola a good model to study social biology within social wasps. In detail, this trait allows for the females of this species to form nests both individually and as co-founders with other females within the same colony. This subspecies is also known to exhibit cannibalism, with M. m. cubicola queens feeding on their own larvae for nourishment when unaided by workers.

Polybia paulista is a species of eusocial wasp occurring in Brazil, Paraguay, and Argentina.

References

  1. 1 2 3 4 5 Turillazzi, S., Francescato, Baldini Tosi, A. E., Carpenter, JM. A distinct caste difference in Polybioides tabidus (Fabricius) (Hymenoptera: Vespidae). Ins. Soc. 41:327-330 (1994). 327-330.
  2. 1 2 3 Henshaw, M. T., J. E. Strassmann, and D. C. Queller. Swarm-founding in the Polistine Wasps: The Importance of Finding Many Microsatellite Loci in Studies of Adaptation. Molecular Ecology 10.1 (2001): 185-91. Web.
  3. 1 2 3 4 Dejean, A. Food sources and alimentary behaviour of Polybioides tabidus. Journal of African Zoology. Vol. 108, No. 2 (1994). 251-260.
  4. 1 2 Arévalo, Elisabeth. Zhu, Yong. Carpenter, James. Strassmann, Joan. The phylogeny of the social wasp subfamily Polistinae: evidence from microsatellite flanking sequences, mitochondrial COI sequence, and morphological characters. BMC Evolutionary Biology 2004, 4:8.
  5. 1 2 3 4 5 6 7 8 Smith, A., O’Donnell, S., Jeanne, R. Evolution of Swarm Communication in Eusocial Wasps (Hymenoptera: Vespidae). Journal of Insect Behavior, Vol. 15, No. 6, (2002). 751-764.
  6. 1 2 3 4 5 van der Vecht, J. The East-Asiatic and Indo-Australian Species of Polybioides buysson and Parapolybia Saussure (Hym., Vespidae). Zoologishe Verhandelingen. Vol. 82 (1966). 3-46.
  7. "Polybioides tabidus (Fabricius, 1781)". GBIF.org. Retrieved 15 October 2014.
  8. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Henshaw, M. T., Strassmann, J. E., Queller, D. C., 2000. The independent origin of a queen number bottleneck that promotes cooperation in the African swarm-founding wasp, Polybioides tabidus. Behavioral Ecology and Sociobiology 48: 478-483.
  9. 1 2 3 Earley, Christopher. "Wasp and Bird Nesting Interactions with Special Reference to Polistes Dominula." Thesis. University of Guelph, 2013. Print.
  10. 1 2 3 4 Henshaw, M. T., Queller, D. C., and Strassmann, J. E., 2002. Control of male production in the swarm-founding wasp, Polybioides tabidus. J. Evolutionary Biology, 15:262-268.
  11. Relative Inclusive Fitness in the Social Wasp Polistes metricus Robert A. Metcalf and Gregory S. Whitt Behavioral Ecology and Sociobiology, Vol. 2, No. 4 (1977), pp. 353-360
  12. 1 2 Strassmann, J. E., Gastreich, K., Queller, D., Hughes, C. Demographic and Genetic Evidence for Cyclical Changes in Queen Number in a Neotropical Wasp, Polybia emaciate. The American Naturalist, Vol. 4, No. 3 (1992), 363-372.
  13. Dejean and Fotso. Nesting associations of small birds and Polybioides tabidus (Vespidae Epiponinae) in Southern Cameroon. Ethology, Ecology, and Evolution. Vol. 7 (1995). 11-25.