Author | Peter R. Cromwell |
---|---|
Subject | Polyhedra |
Genre | Mathematics |
Publisher | Cambridge University Press |
Publication date | 1997 |
Polyhedra is a book on polyhedra, by Peter R. Cromwell. It was published by in 1997 by the Cambridge University Press, with an unrevised paperback edition in 1999. [1]
The book covers both the mathematics of polyhedra and its historical development, limiting itself only to three-dimensional geometry. [2] [3] The notion of what it means to be a polyhedron has varied over the history of the subject, as have other related definitions, an issue that the book handles largely by keeping definitions informal and flexible, and by pointing out problematic examples for these intuitive definitions. [3] Many digressions help make the material readable, [4] and the book includes many illustrations, including historical reproductions, line diagrams, and photographs of models of polyhedra. [3]
Polyhedra has ten chapters, the first four of which are primarily historical, with the remaining six more technical. The first chapter outlines the history of polyhedra from the ancient world up to Hilbert's third problem on the possibility of cutting polyhedra into pieces and reassembling them into different polyhedra. The second chapter considers the symmetries of polyhedra, the Platonic solids and Archimedean solids, and the honeycombs formed by space-filling polyhedra. Chapter 3 covers the history of geometry in medieval Islam and early Europe, including connections to astronomy and the study of visual perspective, and Chapter 4 concerns the contributions of Johannes Kepler to polyhedra and his attempts to use polyhedra to model the structure of the universe. [2] [4]
Among the remaining chapters, Chapter 5 concerns angles and trigonometry, the Euler characteristic, and the Gauss–Bonnet theorem (including also some speculation on whether René Descartes knew about the Euler characteristic prior to Euler). [2] [5] Chapter 6 covers Cauchy's rigidity theorem and flexible polyhedra, and chapter 7 covers self-intersecting star polyhedra. Chapter 8 returns to the symmetries of polyhedra and the classification of possible symmetries, and chapter 9 concerns problems in graph coloring related to polyhedra such as the four color theorem. The final chapter includes material on polyhedral compounds and metamorphoses of polyhedra. [2] [4]
Most of the book requires little in the way of mathematical background, and can be read by interested amateurs; however, some of the material on symmetry towards the end of the book requires some background in group theory. [3] Reviewer Bill Casselman writes that it would probably not be appropriate to use as a textbook in this area, but could be valuable as additional reference material for an undergraduate geometry class. [4] Reviewer Thomas Bending writes that "The writing is clear and entertaining", [3] and reviewer Ed Sandifer writes that Polyhedra is "solid and fascinating ... likely to become the classic book on the topic ... worthy of many readings". [5] Despite complaints about vague referencing of its sources and credits for its historical images, missed connections to modern work in group theory, difficult-to-follow proofs, and occasionally-clumsy illustrations, and typographical errors, Casselman also reviews the book positively, calling it "valuable and a labor of love".
However, two experts on the topics of the book who also reviewed it, polyhedral combinatorics specialist Peter McMullen and historian of mathematics Judith Grabiner, were much less positive. McMullen writes that "There appears to be some degree of carelessness in the preparation of the book", pointing to errors including calling the Dehn invariant a number, mis-dating Hilbert's problems, misspelling the name of artist Wenzel Jamnitzer and misattributing to Jamnitzer an image by M. C. Escher, and using idiosyncratic and occasionally incorrect names for polyhedra. McMullen writes of these errors that "every time I look at the book, I find more", casting into doubt the other less-familiar parts of the book's content. [6] And Grabiner faults the book's history as naive or mistaken, citing as examples its claims that the discovery of irrational numbers ended Pythagorean mysticism, and that pre-Keplerian astronomy consisted only of observation and record-keeping. She accuses Cromwell of basing his narrative on secondary sources rather than checking the original sources he cites, points to sloppy sourcing of historical quotations, and complains about the book's minimal coverage of Islamic and medieval geometry. She writes that the book can be enjoyed as "a treasury" of "beautiful models" and "examples of the impact of polyhedra on the imagination of artists" but should not be relied on for historical insights. [7]
In geometry, a Kepler–Poinsot polyhedron is any of four regular star polyhedra.
In geometry, a polyhedron is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices.
In geometry, the truncated icosahedron is a polyhedron that can be constructed by truncating all of the regular icosahedron's vertices. Intuitively, it may be regarded as footballs that are typically patterned with white hexagons and black pentagons. It can be found in the application of geodesic dome structures such as those whose architecture Buckminster Fuller pioneered are often based on this structure. It is an example of an Archimedean solid, as well as a Goldberg polyhedron.
A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equivalent definitions are used; a common one is that the faces are congruent regular polygons which are assembled in the same way around each vertex.
In geometry, the triangular cupola is the cupola with hexagon as its base and triangle as its top. If the edges are equal in length, the triangular cupola is the Johnson solid. It can be seen as half a cuboctahedron. The triangular cupola can be applied to construct many polyhedrons.
In geometry, faceting is the process of removing parts of a polygon, polyhedron or polytope, without creating any new vertices.
Regular Polytopes is a geometry book on regular polytopes written by Harold Scott MacDonald Coxeter. It was originally published by Methuen in 1947 and by Pitman Publishing in 1948, with a second edition published by Macmillan in 1963 and a third edition by Dover Publications in 1973. The Basic Library List Committee of the Mathematical Association of America has recommended that it be included in undergraduate mathematics libraries.
Treks into Intuitive Geometry: The World of Polygons and Polyhedra is a book on geometry, written as a discussion between a teacher and a student in the style of a Socratic dialogue. It was written by Japanese mathematician Jin Akiyama and science writer Kiyoko Matsunaga, and published by Springer-Verlag in 2015 (ISBN 978-4-431-55841-5), with an expanded second edition in 2024 (ISBN 978-981-99-8607-1).
Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra is an undergraduate-level textbook in geometry, on the interplay between the volume of convex polytopes and the number of lattice points they contain. It was written by Matthias Beck and Sinai Robins, and published in 2007 by Springer-Verlag in their Undergraduate Texts in Mathematics series. A second edition was published in 2015, and a German translation of the first edition by Kord Eickmeyer, Das Kontinuum diskret berechnen, was published by Springer in 2008.
Euler's Gem: The Polyhedron Formula and the Birth of Topology is a book on the formula for the Euler characteristic of convex polyhedra and its connections to the history of topology. It was written by David Richeson and published in 2008 by the Princeton University Press, with a paperback edition in 2012. It won the 2010 Euler Book Prize of the Mathematical Association of America.
Geometry From Africa: Mathematical and Educational Explorations is a book in ethnomathematics by Paulus Gerdes. It analyzes the mathematics behind geometric designs and patterns from multiple African cultures, and suggests ways of connecting this analysis with the mathematics curriculum. It was published in 1999 by the Mathematical Association of America, in their Classroom Resource Materials book series.
Descartes on Polyhedra: A Study of the "De solidorum elementis" is a book in the history of mathematics, concerning the work of René Descartes on polyhedra. Central to the book is the disputed priority for Euler's polyhedral formula between Leonhard Euler, who published an explicit version of the formula, and Descartes, whose De solidorum elementis includes a result from which the formula is easily derived.
Adventures Among the Toroids: A study of orientable polyhedra with regular faces is a book on toroidal polyhedra that have regular polygons as their faces. It was written, hand-lettered, and illustrated by mathematician Bonnie Stewart, and self-published under the imprint "Number One Tall Search Book" in 1970. Stewart put out a second edition, again hand-lettered and self-published, in 1980. Although out of print, the Basic Library List Committee of the Mathematical Association of America has recommended its inclusion in undergraduate mathematics libraries.
Convex Polyhedra is a book on the mathematics of convex polyhedra, written by Soviet mathematician Aleksandr Danilovich Aleksandrov, and originally published in Russian in 1950, under the title Выпуклые многогранники. It was translated into German by Wilhelm Süss as Konvexe Polyeder in 1958. An updated edition, translated into English by Nurlan S. Dairbekov, Semën Samsonovich Kutateladze and Alexei B. Sossinsky, with added material by Victor Zalgaller, L. A. Shor, and Yu. A. Volkov, was published as Convex Polyhedra by Springer-Verlag in 2005.
Convex Polytopes is a graduate-level mathematics textbook about convex polytopes, higher-dimensional generalizations of three-dimensional convex polyhedra. It was written by Branko Grünbaum, with contributions from Victor Klee, Micha Perles, and G. C. Shephard, and published in 1967 by John Wiley & Sons. It went out of print in 1970. A second edition, prepared with the assistance of Volker Kaibel, Victor Klee, and Günter M. Ziegler, was published by Springer-Verlag in 2003, as volume 221 of their book series Graduate Texts in Mathematics.
Perspectiva corporum regularium is a book of perspective drawings of polyhedra by German Renaissance goldsmith Wenzel Jamnitzer, with engravings by Jost Amman, published in 1568.
Regular Figures is a book on polyhedra and symmetric patterns, by Hungarian geometer László Fejes Tóth. It was published in 1964 by Pergamon in London and Macmillan in New York.
The Symmetries of Things is a book on mathematical symmetry and the symmetries of geometric objects, aimed at audiences of multiple levels. It was written over the course of many years by John Horton Conway, Heidi Burgiel, and Chaim Goodman-Strauss, and published in 2008 by A K Peters. Its critical reception was mixed, with some reviewers praising it for its accessible and thorough approach to its material and for its many inspiring illustrations, and others complaining about its inconsistent level of difficulty, overuse of neologisms, failure to adequately cite prior work, and technical errors.
The Cube Made Interesting is a geometry book aimed at high school mathematics students, on the geometry of the cube. It was originally written in Polish by Aniela Ehrenfeucht, titled Ciekawy Sześcian [the interesting cube], and published by Polish Scientific Publishers PWN in 1960. Wacław Zawadowski translated it into English, and the translation was published in 1964 by the Pergamon Press and Macmillan Inc., in their "Popular Lectures in Mathematics" series.