Protonic ceramic fuel cell

Last updated
Scheme of a proton conducting fuel cell Solid oxide fuel cell protonic.svg
Scheme of a proton conducting fuel cell

A protonic ceramic fuel cell or PCFC is a fuel cell based around a ceramic, solid, electrolyte material as the proton conductor from anode to cathode. [1] These fuel cells produce electricity by removing an electron from a hydrogen atom, pushing the charged hydrogen atom through the ceramic membrane, and returning the electron to the hydrogen on the other side of the ceramic membrane during a reaction with oxygen. The reaction of many proposed fuels in PCFCs produce electricity and heat, the latter keeping the device at a suitable temperature. Efficient proton conductivity through most discovered ceramic electrolyte materials require elevated operational temperatures around 600-700 degrees Celsius[ citation needed ], however intermediate temperature (200-400 degrees Celsius) ceramic fuel cells [2] and lower temperature alternative are an active area of research. [3] In addition to hydrogen gas, the ability to operate at intermediate and high temperatures enables the use of a variety of liquid hydrogen carrier fuels, including: ammonia, [4] and methane. [5] The technology shares the thermal and kinetic advantages[ which? ] of high temperature molten carbonate and solid oxide fuel cells, while exhibiting all of the intrinsic benefits of proton conduction in proton-exchange membrane fuel cells (PEMFC) and phosphoric acid fuel cells (PAFC). PCFCs exhaust water at the cathode and unused fuel, fuel reactant products and fuel impurities at the anode. Common chemical compositions of the ceramic membranes are barium zirconate (BaZrO3), [1] caesium dihydrogen phosphate (CsH2PO4), [6] and complex solid solutions of those materials with other ceramic oxides. The acidic oxide ceramics are sometimes broken into their own class of protonic ceramic fuel cells termed "solid acid fuel cells".

Contents

Some PCFCs operate at high enough temperatures that fuels can be electrochemically oxidized at the anode, not needing the intermediate step of producing hydrogen through reforming process[ citation needed ]. In this setting, gaseous molecules of the hydrocarbon fuel are absorbed on the surface of the anode in the presence of water vapor, with carbon dioxide as the primary reaction product; hydrogen atoms are efficiently stripped off to be turned into H+ ions then moving into the electrolyte to the other side (cathode) where they react with oxygen in the air to produce water. Other PCFCs operate at lower temperatures and utilize chemical catalysts in addition to electrochemical catalysts to produce hydrogen for the reduction reaction. [4]

Applications and commercial development

PCFCs operating at intermediate temperature of 200 - 400 degrees Celsius have been proposed for heavy duty trucking. [7] Remote power applications using PCFCs have been demonstrated at Canadian oil wells. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Electrochemical cell</span> Electro-chemical device

An electrochemical cell is a device that generates electrical energy from chemical reactions. Electrical energy can also be applied to these cells to cause chemical reactions to occur. Electrochemical cells that generate an electric current are called voltaic or galvanic cells and those that generate chemical reactions, via electrolysis for example, are called electrolytic cells.

<span class="mw-page-title-main">Fuel cell</span> Device that converts the chemical energy from a fuel into electricity

A fuel cell is an electrochemical cell that converts the chemical energy of a fuel and an oxidizing agent into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requiring a continuous source of fuel and oxygen to sustain the chemical reaction, whereas in a battery the chemical energy usually comes from substances that are already present in the battery. Fuel cells can produce electricity continuously for as long as fuel and oxygen are supplied.

<span class="mw-page-title-main">Electrolysis</span> Technique in chemistry and manufacturing

In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential. The word "lysis" means to separate or break, so in terms, electrolysis would mean "breakdown via electricity".

A regenerative fuel cell or reverse fuel cell (RFC) is a fuel cell run in reverse mode, which consumes electricity and chemical B to produce chemical A. By definition, the process of any fuel cell could be reversed. However, a given device is usually optimized for operating in one mode and may not be built in such a way that it can be operated backwards. Standard fuel cells operated backwards generally do not make very efficient systems unless they are purpose-built to do so as with high-pressure electrolysers, regenerative fuel cells, solid-oxide electrolyser cells and unitized regenerative fuel cells.

<span class="mw-page-title-main">Proton-exchange membrane fuel cell</span> Power generation technology

Proton-exchange membrane fuel cells (PEMFC), also known as polymer electrolyte membrane (PEM) fuel cells, are a type of fuel cell being developed mainly for transport applications, as well as for stationary fuel-cell applications and portable fuel-cell applications. Their distinguishing features include lower temperature/pressure ranges and a special proton-conducting polymer electrolyte membrane. PEMFCs generate electricity and operate on the opposite principle to PEM electrolysis, which consumes electricity. They are a leading candidate to replace the aging alkaline fuel-cell technology, which was used in the Space Shuttle.

<span class="mw-page-title-main">Solid oxide fuel cell</span> Fuel cell that produces electricity by oxidization

A solid oxide fuel cell is an electrochemical conversion device that produces electricity directly from oxidizing a fuel. Fuel cells are characterized by their electrolyte material; the SOFC has a solid oxide or ceramic electrolyte.

<span class="mw-page-title-main">Molten carbonate fuel cell</span>

Molten-carbonate fuel cells (MCFCs) are high-temperature fuel cells that operate at temperatures of 600 °C and above.

<span class="mw-page-title-main">Alkaline fuel cell</span> Type of fuel cell

The alkaline fuel cell (AFC), also known as the Bacon fuel cell after its British inventor, Francis Thomas Bacon, is one of the most developed fuel cell technologies. Alkaline fuel cells consume hydrogen and pure oxygen, to produce potable water, heat, and electricity. They are among the most efficient fuel cells, having the potential to reach 70%.

A proton-exchange membrane, or polymer-electrolyte membrane (PEM), is a semipermeable membrane generally made from ionomers and designed to conduct protons while acting as an electronic insulator and reactant barrier, e.g. to oxygen and hydrogen gas. This is their essential function when incorporated into a membrane electrode assembly (MEA) of a proton-exchange membrane fuel cell or of a proton-exchange membrane electrolyser: separation of reactants and transport of protons while blocking a direct electronic pathway through the membrane.

<span class="mw-page-title-main">Flow battery</span> Type of electrochemical cell

A flow battery, or redox flow battery, is a type of electrochemical cell where chemical energy is provided by two chemical components dissolved in liquids that are pumped through the system on separate sides of a membrane. Ion transfer inside the cell occurs through the membrane while both liquids circulate in their own respective space. Cell voltage is chemically determined by the Nernst equation and ranges, in practical applications, from 1.0 to 2.43 volts. The energy capacity is a function of the electrolyte volume and the power is a function of the surface area of the electrodes.

<span class="mw-page-title-main">Electrolysis of water</span> Electricity-induced chemical reaction

Electrolysis of water is using electricity to split water into oxygen and hydrogen gas by electrolysis. Hydrogen gas released in this way can be used as hydrogen fuel, but must be kept apart from the oxygen as the mixture would be extremely explosive. Separately pressurised into convenient 'tanks' or 'gas bottles', hydrogen can be used for oxyhydrogen welding and other applications, as the hydrogen / oxygen flame can reach approximately 2,800°C.

The Glossary of fuel cell terms lists the definitions of many terms used within the fuel cell industry. The terms in this fuel cell glossary may be used by fuel cell industry associations, in education material and fuel cell codes and standards to name but a few.

<span class="mw-page-title-main">Solid oxide electrolyzer cell</span> Type of fuel cell

A solid oxide electrolyzer cell (SOEC) is a solid oxide fuel cell that runs in regenerative mode to achieve the electrolysis of water by using a solid oxide, or ceramic, electrolyte to produce hydrogen gas and oxygen. The production of pure hydrogen is compelling because it is a clean fuel that can be stored, making it a potential alternative to batteries, methane, and other energy sources. Electrolysis is currently the most promising method of hydrogen production from water due to high efficiency of conversion and relatively low required energy input when compared to thermochemical and photocatalytic methods.

Sossina M. Haile is an American chemist, known for developing the first solid acid fuel cells. She is a professor of materials science and engineering at Northwestern University, Illinois, US.

The lithium–air battery (Li–air) is a metal–air electrochemical cell or battery chemistry that uses oxidation of lithium at the anode and reduction of oxygen at the cathode to induce a current flow.

<span class="mw-page-title-main">Alkaline anion exchange membrane fuel cell</span>

An alkaline anion exchange membrane fuel cell (AAEMFC), also known as anion-exchange membrane fuel cells (AEMFCs), alkaline membrane fuel cells (AMFCs), hydroxide exchange membrane fuel cells (HEMFCs), or solid alkaline fuel cells (SAFCs) is a type of alkaline fuel cell that uses an anion exchange membrane to separate the anode and cathode compartments.

<span class="mw-page-title-main">Proton exchange membrane electrolysis</span> Technology for splitting water molecules

Proton exchange membrane(PEM) electrolysis is the electrolysis of water in a cell equipped with a solid polymer electrolyte (SPE) that is responsible for the conduction of protons, separation of product gases, and electrical insulation of the electrodes. The PEM electrolyzer was introduced to overcome the issues of partial load, low current density, and low pressure operation currently plaguing the alkaline electrolyzer. It involves a proton-exchange membrane.

<span class="mw-page-title-main">Caesium bisulfate</span> Chemical compound

Caesium bisulfate or cesium hydrogen sulfate is an inorganic compound with the formula CsHSO4. The caesium salt of bisulfate, it is a colorless solid obtained by combining Cs2SO4 and H2SO4.

<span class="mw-page-title-main">Mixed conductor</span>

Mixed conductors, also known as mixed ion-electron conductors(MIEC), are a single-phase material that has significant conduction ionically and electronically. Due to the mixed conduction, a formally neutral species can transport in a solid and therefore mass storage and redistribution are enabled. Mixed conductors are well known in conjugation with high-temperature superconductivity and are able to capacitate rapid solid-state reactions.

Solid acid fuel cells (SAFCs) are a class of fuel cells characterized by the use of a solid acid material as the electrolyte. Similar to proton exchange membrane fuel cells and solid oxide fuel cells, they extract electricity from the electrochemical conversion of hydrogen- and oxygen-containing gases, leaving only water as a byproduct. Current SAFC systems use hydrogen gas obtained from a range of different fuels, such as industrial-grade propane and diesel. They operate at mid-range temperatures, from 200 to 300 °C.

References

  1. 1 2 Kreuer, K.d. (2003-08-01). "Proton-Conducting Oxides". Annual Review of Materials Research. 33 (1): 333–359. Bibcode:2003AnRMS..33..333K. doi:10.1146/annurev.matsci.33.022802.091825. ISSN   1531-7331.
  2. Haile, Sossina M (2003-03-01). "Materials for fuel cells". Materials Today. 6 (3): 24–29. doi: 10.1016/S1369-7021(03)00331-6 . ISSN   1369-7021.
  3. Meng, Yuqing; Gao, Jun; Zhao, Zeyu; Amoroso, Jake; Tong, Jianhua; Brinkman, Kyle S. (2019-07-01). "Review: recent progress in low-temperature proton-conducting ceramics". Journal of Materials Science. 54 (13): 9291–9312. Bibcode:2019JMatS..54.9291M. doi: 10.1007/s10853-019-03559-9 . ISSN   1573-4803. S2CID   146646545.
  4. 1 2 Lim, Dae-Kwang; Plymill, Austin B.; Paik, Haemin; Qian, Xin; Zecevic, Strahinja; Chisholm, Calum R. I.; Haile, Sossina M. (2020-11-18). "Solid Acid Electrochemical Cell for the Production of Hydrogen from Ammonia". Joule. 4 (11): 2338–2347. doi: 10.1016/j.joule.2020.10.006 . ISSN   2542-4785. S2CID   228820554.
  5. Le, Long Q.; Hernandez, Carolina Herradon; Rodriguez, Marcos Hernandez; Zhu, Liangzhu; Duan, Chuancheng; Ding, Hanping; O'Hayre, Ryan P.; Sullivan, Neal P. (2021-01-15). "Proton-conducting ceramic fuel cells: Scale up and stack integration". Journal of Power Sources. 482: 228868. Bibcode:2021JPS...48228868L. doi: 10.1016/j.jpowsour.2020.228868 . ISSN   0378-7753. S2CID   224853168.
  6. Haile, Sossina M.; Boysen, Dane A.; Chisholm, Calum R. I.; Merle, Ryan B. (2001). "Solid acids as fuel cell electrolytes". Nature. 410 (6831): 910–913. Bibcode:2001Natur.410..910H. doi:10.1038/35073536. ISSN   1476-4687. PMID   11309611. S2CID   4430178.
  7. Gittleman, Craig S.; Jia, Hongfei; Castro, Emory S. De; Chisholm, Calum R. I.; Kim, Yu Seung (2021-07-21). "Proton conductors for heavy-duty vehicle fuel cells". Joule. 5 (7): 1660–1677. doi: 10.1016/j.joule.2021.05.016 . ISSN   2542-4785. S2CID   236285846.
  8. FuelCellsWorks. "SAFCell Completes 50 Watt Fuel Cell Field Trial At Shell Canada Well Site - FuelCellsWorks" . Retrieved 2021-11-08.

Further reading