Direct methanol fuel cells or DMFCs are a subcategory of proton-exchange membrane fuel cells in which methanol is used as the fuel and a special proton-conducting polymer as the membrane (PEM). Their main advantage is low temperature operation and the ease of transport of methanol, an energy-dense yet reasonably stable liquid at all environmental conditions.
Whilst the thermodynamic theoretical energy conversion efficiency of a DMFC is 97%; [1] as of 2014 the achievable energy conversion efficiency for operational cells attains 30% [2] – 40%. [3] There is intensive research on promising approaches to increase the operational efficiency. [4]
A more efficient version of a direct fuel cell would play a key role in the theoretical use of methanol as a general energy transport medium, in the hypothesized methanol economy.
In contrast to indirect methanol fuel cells, where methanol is reacted to hydrogen by steam reforming, DMFCs use a methanol solution (usually around 1M, i.e. about 3% in mass) to carry the reactant into the cell; common operating temperatures are in the range 50 to 120 °C (122 to 248 °F), where high temperatures are usually pressurized. DMFCs themselves are more efficient at high temperatures and pressures, but these conditions end up causing so many losses in the complete system that the advantage is lost; [5] therefore, atmospheric-pressure configurations are currently preferred.
Because of the methanol cross-over, a phenomenon by which methanol diffuses through the membrane without reacting, methanol is fed as a weak solution: this decreases efficiency significantly, since crossed-over methanol, after reaching the air side (the cathode), immediately reacts with air; though the exact kinetics are debated, the result is a reduction of the cell voltage. Cross-over remains a major factor in inefficiencies, and often half of the methanol is lost to cross-over. Methanol cross-over and/or its effects can be alleviated by (a) developing alternative membranes (e.g. [6] [7] ), (b) improving the electro-oxidation process in the catalyst layer and improving the structure of the catalyst and gas diffusion layers (e.g. [8] ), and (c) optimizing the design of the flow field and the membrane electrode assembly (MEA) which can be achieved by studying the current density distributions (e.g. [9] ).
Other issues include the management of carbon dioxide created at the anode, the sluggish dynamic behavior, and the ability to maintain the solution water.
The only waste products with these types of fuel cells are carbon dioxide and water.
Current DMFCs are limited in the power they can produce, but can still store a high energy content in a small space. This means they can produce a small amount of power over a long period of time. This makes them ill-suited for powering large vehicles (at least directly), but ideal for smaller vehicles such as forklifts and tuggers [10] and consumer goods such as mobile phones, digital cameras or laptops. Military applications of DMFCs are an emerging application since they have low noise and thermal signatures and no toxic effluent. These applications include power for man-portable tactical equipment, battery chargers, and autonomous power for test and training instrumentation. Units are available with power outputs between 25 watts and 5 kilowatts with durations up to 100 hours between refuelings. Especially for power output up to 0.3 kW the DMFC is suitable. For a power output of more than 0.3 kW the indirect methanol fuel cell presents a higher efficiency and is more cost-efficient. [11] Freezing of the liquid methanol-water mixture in the stack at low ambient temperature can be problematic for the membrane of DMFC (in contrast to indirect methanol fuel cell).
Methanol is a liquid from −97.6 to 64.7 °C (−143.7 to 148.5 °F) at atmospheric pressure. The volumetric energy density of methanol is an order of magnitude greater than even highly compressed hydrogen, about two times greater than liquid hydrogen and 2.6 times higher than lithium-ion batteries.[ when? ] The energy density per mass is a tenth of that of hydrogen, but 10 times higher than that of lithium-ion batteries. [12]
Methanol is slightly toxic and highly flammable. However, the International Civil Aviation Organization's (ICAO) Dangerous Goods Panel (DGP) voted in November 2005 to allow passengers to carry and use micro fuel cells and methanol fuel cartridges when aboard airplanes to power laptop computers and other consumer electronic devices. On September 24, 2007, the US Department of Transportation issued a proposal to allow airline passengers to carry fuel cell cartridges on board. [13] The Department of Transportation issued a final ruling on April 30, 2008, permitting passengers and crew to carry an approved fuel cell with an installed methanol cartridge and up to two additional spare cartridges. [14] It is worth noting that 200 ml maximum methanol cartridge volume allowed in the final ruling is double the 100 ml limit on liquids allowed by the Transportation Security Administration in carry-on bags. [15]
The DMFC relies upon the oxidation of methanol on a catalyst layer to form carbon dioxide. Water is consumed at the anode and produced at the cathode. Protons (H+) are transported across the proton exchange membrane - often made from Nafion - to the cathode where they react with oxygen to produce water. Electrons are transported through an external circuit from anode to cathode, providing power to connected devices.
The half-reactions are:
Equation | |
---|---|
Anode | oxidation |
Cathode | reduction |
Overall reaction | redox reaction |
Methanol and water are adsorbed on a catalyst usually made of platinum and ruthenium particles, and lose protons until carbon dioxide is formed. As water is consumed at the anode in the reaction, pure methanol cannot be used without provision of water via either passive transport such as back diffusion (osmosis), or active transport such as pumping. The need for water limits the energy density of the fuel.
Platinum is used as a catalyst for both half-reactions. This contributes to the loss of cell voltage potential, as any methanol that is present in the cathode chamber will oxidize. If another catalyst could be found for the reduction of oxygen, the problem of methanol crossover would likely be significantly lessened. Furthermore, platinum is very expensive and contributes to the high cost per kilowatt of these cells.
During the methanol oxidation reaction carbon monoxide (CO) is formed, which strongly adsorbs onto the platinum catalyst, reducing the number of available reaction sites and thus the performance of the cell. The addition of other metals, such as ruthenium or gold, to the platinum catalyst tends to ameliorate this problem. In the case of platinum-ruthenium catalysts, the oxophilic nature of ruthenium is believed to promote the formation of hydroxyl radicals on its surface, which can then react with carbon monoxide adsorbed on the platinum atoms. The water in the fuel cell is oxidized to a hydroxy radical via the following reaction: H2O → OH• + H+ + e−. The hydroxy radical then oxidizes carbon monoxide to produce carbon dioxide, which is released from the surface as a gas: CO + OH• → CO2 + H+ + e−. [16]
Using these OH groups in the half reactions, they are also expressed as:
Equation | |
---|---|
Anode | oxidation |
Cathode | reduction |
Overall reaction | redox reaction |
Methanol on the anodic side is usually in a weak solution (from 1M to 3M), because methanol in high concentrations has the tendency to diffuse through the membrane to the cathode, where its concentration is about zero because it is rapidly consumed by oxygen. Low concentrations help in reducing the cross-over, but also limit the maximum attainable current.
The practical realization is usually that a solution loop enters the anode, exits, is refilled with methanol, and returns to the anode again. Alternatively, fuel cells with optimized structures can be directly fed with high concentration methanol solutions or even pure methanol. [17]
The water in the anodic loop is lost because of the anodic reaction, but mostly because of the associated water drag: every proton formed at the anode drags a number of water molecules to the cathode. Depending on temperature and membrane type, this number can be between 2 and 6.
A direct methanol fuel cell is usually part of a larger system including all the ancillary units that permit its operation. Compared to most other types of fuel cells, the ancillary system of DMFCs is relatively complex. The main reasons for its complexity are:
A fuel cell is an electrochemical cell that converts the chemical energy of a fuel and an oxidizing agent into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requiring a continuous source of fuel and oxygen to sustain the chemical reaction, whereas in a battery the chemical energy usually comes from substances that are already present in the battery. Fuel cells can produce electricity continuously for as long as fuel and oxygen are supplied.
In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential. The word "lysis" means to separate or break, so in terms, electrolysis would mean "breakdown via electricity."
A regenerative fuel cell or reverse fuel cell (RFC) is a fuel cell run in reverse mode, which consumes electricity and chemical B to produce chemical A. By definition, the process of any fuel cell could be reversed. However, a given device is usually optimized for operating in one mode and may not be built in such a way that it can be operated backwards. Standard fuel cells operated backwards generally do not make very efficient systems unless they are purpose-built to do so as with high-pressure electrolysers, regenerative fuel cells, solid-oxide electrolyser cells and unitized regenerative fuel cells.
Proton-exchange membrane fuel cells (PEMFC), also known as polymer electrolyte membrane (PEM) fuel cells, are a type of fuel cell being developed mainly for transport applications, as well as for stationary fuel-cell applications and portable fuel-cell applications. Their distinguishing features include lower temperature/pressure ranges and a special proton-conducting polymer electrolyte membrane. PEMFCs generate electricity and operate on the opposite principle to PEM electrolysis, which consumes electricity. They are a leading candidate to replace the aging alkaline fuel-cell technology, which was used in the Space Shuttle.
A solid oxide fuel cell is an electrochemical conversion device that produces electricity directly from oxidizing a fuel. Fuel cells are characterized by their electrolyte material; the SOFC has a solid oxide or ceramic electrolyte.
The alkaline fuel cell (AFC), also known as the Bacon fuel cell after its British inventor, Francis Thomas Bacon, is one of the most developed fuel cell technologies. Alkaline fuel cells consume hydrogen and pure oxygen, to produce potable water, heat, and electricity. They are among the most efficient fuel cells, having the potential to reach 70%.
A proton-exchange membrane, or polymer-electrolyte membrane (PEM), is a semipermeable membrane generally made from ionomers and designed to conduct protons while acting as an electronic insulator and reactant barrier, e.g. to oxygen and hydrogen gas. This is their essential function when incorporated into a membrane electrode assembly (MEA) of a proton-exchange membrane fuel cell or of a proton-exchange membrane electrolyser: separation of reactants and transport of protons while blocking a direct electronic pathway through the membrane.
Electrolysis of water is using electricity to split water into oxygen and hydrogen gas by electrolysis. Hydrogen gas released in this way can be used as hydrogen fuel, but must be kept apart from the oxygen as the mixture would be extremely explosive. Separately pressurised into convenient 'tanks' or 'gas bottles', hydrogen can be used for oxyhydrogen welding and other applications, as the hydrogen / oxygen flame can reach approximately 2,800°C.
Formic acid fuel cells (direct formic acid fuel cells or DFAFCs) are a subcategory of direct liquid-feed fuel cells (DLFCs), in which the liquid fuel is directly oxidized (electrochemically) at the anode instead of reforming to produce hydrogen. Formic acid-based fuel cells represent a promising energy supply system in terms of high volumetric energy density, theoretical energy efficiency, and theoretical open-circuit voltage. They are also able to overcome certain problems inherent to traditional hydrogen (H2) feed fuel cells such as safe handling, storage, and H2 transportation.
Direct-ethanol fuel cells or DEFCs are a category of fuel cell in which ethanol is fed directly into the cell. They have been used as a model to investigate a range of fuel cell concepts including the use of PEM.
Reformed Methanol Fuel Cell (RMFC) or Indirect Methanol Fuel Cell (IMFC) systems are a subcategory of proton-exchange fuel cells where, the fuel, methanol (CH3OH), is reformed, before being fed into the fuel cell.
A Direct Carbon Fuel Cell (DCFC) is a fuel cell that uses a carbon rich material as a fuel such as bio-mass or coal. The cell produces energy by combining carbon and oxygen, which releases carbon dioxide as a by-product. It is also called coal fuel cells (CFCs), carbon-air fuel cells (CAFCs), direct carbon/coal fuel cells (DCFCs), and DC-SOFC.
An enzymatic biofuel cell is a specific type of fuel cell that uses enzymes as a catalyst to oxidize its fuel, rather than precious metals. Enzymatic biofuel cells, while currently confined to research facilities, are widely prized for the promise they hold in terms of their relatively inexpensive components and fuels, as well as a potential power source for bionic implants.
A membrane electrode assembly (MEA) is an assembled stack of proton-exchange membranes (PEM) or alkali anion exchange membrane (AAEM), catalyst and flat plate electrode used in fuel cells and electrolyzers.
The Glossary of fuel cell terms lists the definitions of many terms used within the fuel cell industry. The terms in this fuel cell glossary may be used by fuel cell industry associations, in education material and fuel cell codes and standards to name but a few.
A solid oxide electrolyzer cell (SOEC) is a solid oxide fuel cell that runs in regenerative mode to achieve the electrolysis of water by using a solid oxide, or ceramic, electrolyte to produce hydrogen gas and oxygen. The production of pure hydrogen is compelling because it is a clean fuel that can be stored, making it a potential alternative to batteries, methane, and other energy sources. Electrolysis is currently the most promising method of hydrogen production from water due to high efficiency of conversion and relatively low required energy input when compared to thermochemical and photocatalytic methods.
Membraneless Fuel Cells convert stored chemical energy into electrical energy without the use of a conducting membrane as with other types of Fuel Cells. In Laminar Flow Fuel Cells (LFFC) this is achieved by exploiting the phenomenon of non-mixing laminar flows where the interface between the two flows works as a proton/ion conductor. The interface allows for high diffusivity and eliminates the need for costly membranes. The operating principles of these cells mean that they can only be built to millimeter-scale sizes. The lack of a membrane means they are cheaper but the size limits their use to portable applications which require small amounts of power.
An alkaline anion-exchange membrane fuel cell (AAEMFC), also known as anion-exchange membrane fuel cells (AEMFCs), alkaline membrane fuel cells (AMFCs), hydroxide-exchange membrane fuel cells (HEMFCs), or solid alkaline fuel cells (SAFCs) is a type of alkaline fuel cell that uses an anion-exchange membrane to separate the anode and cathode compartments.
Proton exchange membrane(PEM) electrolysis is the electrolysis of water in a cell equipped with a solid polymer electrolyte (SPE) that is responsible for the conduction of protons, separation of product gases, and electrical insulation of the electrodes. The PEM electrolyzer was introduced to overcome the issues of partial load, low current density, and low pressure operation currently plaguing the alkaline electrolyzer. It involves a proton-exchange membrane.
Anion exchange membrane(AEM) electrolysis is the electrolysis of water that utilises a semipermeable membrane that conducts hydroxide ions (OH−) called an anion exchange membrane. Like a proton-exchange membrane (PEM), the membrane separates the products, provides electrical insulation between electrodes, and conducts ions. Unlike PEM, AEM conducts hydroxide ions. The major advantage of AEM water electrolysis is that a high-cost noble metal catalyst is not required, low-cost transition metal catalyst can be used instead. AEM electrolysis is similar to alkaline water electrolysis, which uses a non-ion-selective separator instead of an anion-exchange membrane.