A solid oxide electrolyzer cell (SOEC) is a solid oxide fuel cell that runs in regenerative mode to achieve the electrolysis of water (and/or carbon dioxide) [1] by using a solid oxide, or ceramic, electrolyte to produce hydrogen gas [2] (and/or carbon monoxide) and oxygen. The production of pure hydrogen is compelling because it is a clean fuel that can be stored, making it a potential alternative to batteries, methane, and other energy sources (see hydrogen economy). [3] Electrolysis is currently the most promising method of hydrogen production from water due to high efficiency of conversion and relatively low required energy input when compared to thermochemical and photocatalytic methods. [4]
Solid oxide electrolyzer cells operate at temperatures which allow high-temperature electrolysis [5] to occur, typically between 500 and 850 °C. These operating temperatures are similar to those conditions for a solid oxide fuel cell. The net cell reaction yields hydrogen and oxygen gases. The reactions for one mole of water are shown below, with oxidation of oxide ions occurring at the anode and reduction of water occurring at the cathode.
Anode: 2 O2− → O2 + 4 e−
Cathode: H2O + 2 e− → H2 + O2−
Net Reaction: 2 H2O → 2 H2 + O2
Electrolysis of water at 298 K (25 °C) requires 285.83 kJ of energy per mole in order to occur, [6] and the reaction is increasingly endothermic with increasing temperature. However, the energy demand may be reduced due to the Joule heating of an electrolysis cell, which may be utilized in the water splitting process at high temperatures. Research is ongoing to add heat from external heat sources such as concentrating solar thermal collectors and geothermal sources. [7]
The general function of the electrolyzer cell is to split water in the form of steam into pure H2 and O2. Steam is fed into the porous cathode. When a voltage is applied, the steam moves to the cathode-electrolyte interface and is reduced to form pure H2 and oxygen ions. The hydrogen gas then diffuses back up through the cathode and is collected at its surface as hydrogen fuel, while the oxygen ions are conducted through the dense electrolyte. The electrolyte must be dense enough that the steam and hydrogen gas cannot diffuse through and lead to the recombination of the H2 and O2−. At the electrolyte-anode interface, the oxygen ions are oxidized to form pure oxygen gas, which is collected at the surface of the anode. [8]
Solid oxide electrolyzer cells follow the same construction of a solid-oxide fuel cell, consisting of a fuel electrode (cathode), an oxygen electrode (anode) and a solid-oxide electrolyte.
The most common electrolyte, again similar to solid-oxide fuel cells, is a dense ionic conductor consisting of ZrO2 doped with 8 mol-% Y2O3 (also known as YSZ, ytrium-stabilized zirconia). Zirconium dioxide is used because of its high strength, high melting temperature (approximately 2700 °C) and excellent corrosion resistance. Yttrium(III) oxide (Y2O3) is added to mitigate the phase transition from the tetragonal to the monoclinic phase on rapid cooling, which can lead to cracks and decrease the conductive properties of the electrolyte by causing scattering. [9] Some other common choices for SOEC are Scandia stabilized zirconia (ScSZ), ceria based electrolytes or lanthanum gallate materials. Despite the material similarity to solid oxide fuel cells, the operating conditions are different, leading to issues such as high steam concentrations at the fuel electrode and high oxygen partial pressures at the electrolyte/oxygen electrode interface. [10] A recent study found that periodic cycling a cell between electrolyzer and fuel cell modes reduced the oxygen partial pressure build up and drastically increased the lifetime of the electrolyzer cell. [11]
The most common fuel electrode material is a Ni doped YSZ. However, high steam partial pressures and low hydrogen partial pressures at the Ni-YSZ interface causes oxidation of the nickel which results in catalyst degradation. [12] Perovskite-type lanthanum strontium manganese (LSM) is also commonly used as a cathode material. Recent studies have found that doping LSM with scandium to form LSMS promotes mobility of oxide ions in the cathode, increasing reduction kinetics at the interface with the electrolyte and thus leading to higher performance at low temperatures than traditional LSM cells. However, further development of the sintering process parameters is required to prevent precipitation of scandium oxide into the LSM lattice. These precipitate particles are problematic because they can impede electron and ion conduction. In particular, the processing temperature and concentration of scandium in the LSM lattice are being researched to optimize the properties of the LSMS cathode. [13] New materials are being researched such as lanthanum strontium manganese chromate (LSCM), which has proven to be more stable under electrolysis conditions. [14] LSCM has high redox stability, which is crucial especially at the interface with the electrolyte. Scandium-doped LCSM (LSCMS) is also being researched as a cathode material due to its high ionic conductivity. However, the rare-earth element introduces a significant materials cost and was found to cause a slight decrease in overall mixed conductivity. Nonetheless, LCSMS materials have demonstrated high efficiency at temperatures as low as 700 °C. [15]
Lanthanum strontium manganate (LSM) is the most common oxygen electrode material. LSM offers high performance under electrolysis conditions due to generation of oxygen vacancies under anodic polarization that aid oxygen diffusion. [16] In addition, impregnating LSM electrode with Gd-doped CeO2 (GDC) nanoparticles was found to increase cell lifetime by preventing delamination at the electrode/electrolyte interface. [17] The exact mechanism by how this happen needs to be explore further. In a 2010 study, it was found that neodymium nickelate as an anode material provided 1.7 times the current density of typical LSM anodes when integrated into a commercial SOEC and operated at 700 °C, and approximately 4 times the current density when operated at 800 °C. The increased performance is postulated to be due to higher "overstoichimoetry" of oxygen in the neodymium nickelate, making it a successful conductor of both ions and electrons. [18]
Advantages of solid oxide-based regenerative fuel cells include high efficiencies, as they are not limited by Carnot efficiency. [19] Additional advantages include long-term stability, fuel flexibility, low emissions, and low operating costs. However, the greatest disadvantage is the high operating temperature, which results in long start-up times and break-in times. The high operating temperature also leads to mechanical compatibility issues such as thermal expansion mismatch and chemical stability issues such as diffusion between layers of material in the cell [20]
In principle, the process of any fuel cell could be reversed, due to the inherent reversibility of chemical reactions. [21] However, a given fuel cell is usually optimized for operating in one mode and may not be built in such a way that it can be operated in reverse. Fuel cells operated backwards may not make very efficient systems unless they are constructed to do so such as in the case of solid oxide electrolyzer cells, high pressure electrolyzers, unitized regenerative fuel cells and regenerative fuel cells. However, current research is being conducted to investigate systems in which a solid oxide cell may be run in either direction efficiently. [22]
Fuel cells operated in electrolysis mode have been observed to degrade primarily due to anode delamination from the electrolyte. The delamination is a result of high oxygen partial pressure build up at the electrolyte-anode interface. Pores in the electrolyte-anode material act to confine high oxygen partial pressures inducing stress concentration in the surrounding material. The maximum stress induced can be expressed in terms of the internal oxygen pressure using the following equation from fracture mechanics: [23]
where c is the length of the crack or pore and is the radius of curvature of the crack or pore. If exceeds the theoretical strength of the material, the crack will propagate, macroscopically resulting in delamination.
Virkar et al. created a model to calculate the internal oxygen partial pressure from the oxygen partial pressure exposed to the electrodes and the electrolyte resistive properties. [24] The internal pressure of oxygen at the electrolyte- anode interface was modelled as:
where is the oxygen partial pressure exposed to the oxygen electrode (anode), is the area specific electronic resistance at the anode interface, is the area specific ionic resistance at the anode interface, is the applied voltage, is the Nernst potential, and are the overall electronic and ionic area specific resistances respectively, and and are the electric potentials at the anode surface and the anode electrolyte interface respectively. [25]
In electrolysis mode > and >. Whether is greater than is dictated by whether (- ) or is greater than . The internal oxygen partial pressure is minimized by increasing the electronic resistance at the anode interface and decreasing the ionic resistance at anode interface.
Delamination of the anode from the electrolyte increases the resistance of the cell and necessitates higher operating voltages in order to maintain a stable current. [26] Higher applied voltages increases the internal oxygen partial pressure, further exacerbating the degradation.
SOECs have possible application in fuel production, carbon dioxide recycling, and chemicals synthesis. In addition to the production of hydrogen and oxygen, an SOEC could be used to create syngas by electrolyzing water vapor and carbon dioxide. [27] Mega-watt scale SOEC have been installed in Rotterdam, using industrial waste heat to reach its operating temperature of 850°C . [28]
In 2014 MIT successfully tested a devices used in Mars Oxygen ISRU Experiment on the Perseverance rover as a means to produce oxygen for both human sustenance and liquid oxygen rocket propellant. [29] [30] In April 2021, NASA claimed it has successfully produced 1 gallon of earth-equivalent oxygen (4 and 5 grams of oxygen on Mars) from CO2 in the Mars atmosphere. [31]
SOEC modules can operate in three different modes: exothermic, endothermic and thermoneutral. In exothermic mode, the stack temperature increases during operation due to heat accumulation, and this heat is used for inlet gas preheating. Therefore, an external heat source is not needed while the electrical energy consumption increases. In the endothermic stack operation mode, there is an increase in heat energy consumption and a reduction in electrical energy consumption and hydrogen production because the average current density also decreases. The third mode is thermoneutral in which the heat generated through irreversible losses is equal to the heat required by the reaction. As there are some thermal losses, an external heat source is needed. This mode consumes more electricity than endothermic operation mode. [32]
Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference and identifiable chemical change. These reactions involve electrons moving via an electronically-conducting phase between electrodes separated by an ionically conducting and electronically insulating electrolyte.
An electrochemical cell is a device that generates electrical energy from chemical reactions. Electrical energy can also be applied to these cells to cause chemical reactions to occur. Electrochemical cells that generate an electric current are called voltaic or galvanic cells and those that generate chemical reactions, via electrolysis for example, are called electrolytic cells.
A fuel cell is an electrochemical cell that converts the chemical energy of a fuel and an oxidizing agent into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requiring a continuous source of fuel and oxygen to sustain the chemical reaction, whereas in a battery the chemical energy usually comes from substances that are already present in the battery. Fuel cells can produce electricity continuously for as long as fuel and oxygen are supplied.
In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential. The word "lysis" means to separate or break, so in terms, electrolysis would mean "breakdown via electricity."
A regenerative fuel cell or reverse fuel cell (RFC) is a fuel cell run in reverse mode, which consumes electricity and chemical B to produce chemical A. By definition, the process of any fuel cell could be reversed. However, a given device is usually optimized for operating in one mode and may not be built in such a way that it can be operated backwards. Standard fuel cells operated backwards generally do not make very efficient systems unless they are purpose-built to do so as with high-pressure electrolysers, regenerative fuel cells, solid-oxide electrolyser cells and unitized regenerative fuel cells.
Proton-exchange membrane fuel cells (PEMFC), also known as polymer electrolyte membrane (PEM) fuel cells, are a type of fuel cell being developed mainly for transport applications, as well as for stationary fuel-cell applications and portable fuel-cell applications. Their distinguishing features include lower temperature/pressure ranges and a special proton-conducting polymer electrolyte membrane. PEMFCs generate electricity and operate on the opposite principle to PEM electrolysis, which consumes electricity. They are a leading candidate to replace the aging alkaline fuel-cell technology, which was used in the Space Shuttle.
A solid oxide fuel cell is an electrochemical conversion device that produces electricity directly from oxidizing a fuel. Fuel cells are characterized by their electrolyte material; the SOFC has a solid oxide or ceramic electrolyte.
Molten-carbonate fuel cells (MCFCs) are high-temperature fuel cells that operate at temperatures of 600 °C and above.
The alkaline fuel cell (AFC), also known as the Bacon fuel cell after its British inventor, Francis Thomas Bacon, is one of the most developed fuel cell technologies. Alkaline fuel cells consume hydrogen and pure oxygen, to produce potable water, heat, and electricity. They are among the most efficient fuel cells, having the potential to reach 70%.
High-temperature electrolysis is a technology for producing hydrogen from water at high temperatures or other products, such as iron or carbon nanomaterials, as higher energy lowers needed electricity to split molecules and opens up new, potentially better electrolytes like molten salts or hydroxides. Unlike electrolysis at room temperature, HTE operates at elevated temperature ranges depending on the thermal capacity of the material. Because of the detrimental effects of burning fossil fuels on humans and the environment, HTE has become a necessary alternative and efficient method by which hydrogen can be prepared on a large scale and used as fuel. The vision of HTE is to move towards decarbonization in all economic sectors. The material requirements for this process are: the heat source, the electrodes, the electrolyte, the electrolyzer membrane, and the source of electricity.
A proton-exchange membrane, or polymer-electrolyte membrane (PEM), is a semipermeable membrane generally made from ionomers and designed to conduct protons while acting as an electronic insulator and reactant barrier, e.g. to oxygen and hydrogen gas. This is their essential function when incorporated into a membrane electrode assembly (MEA) of a proton-exchange membrane fuel cell or of a proton-exchange membrane electrolyser: separation of reactants and transport of protons while blocking a direct electronic pathway through the membrane.
Electrolysis of water is using electricity to split water into oxygen and hydrogen gas by electrolysis. Hydrogen gas released in this way can be used as hydrogen fuel, but must be kept apart from the oxygen as the mixture would be extremely explosive. Separately pressurised into convenient 'tanks' or 'gas bottles', hydrogen can be used for oxyhydrogen welding and other applications, as the hydrogen / oxygen flame can reach approximately 2,800°C.
The lithium–air battery (Li–air) is a metal–air electrochemical cell or battery chemistry that uses oxidation of lithium at the anode and reduction of oxygen at the cathode to induce a current flow.
A metal–air electrochemical cell is an electrochemical cell that uses an anode made from pure metal and an external cathode of ambient air, typically with an aqueous or aprotic electrolyte.
Membraneless Fuel Cells convert stored chemical energy into electrical energy without the use of a conducting membrane as with other types of Fuel Cells. In Laminar Flow Fuel Cells (LFFC) this is achieved by exploiting the phenomenon of non-mixing laminar flows where the interface between the two flows works as a proton/ion conductor. The interface allows for high diffusivity and eliminates the need for costly membranes. The operating principles of these cells mean that they can only be built to millimeter-scale sizes. The lack of a membrane means they are cheaper but the size limits their use to portable applications which require small amounts of power.
Proton exchange membrane(PEM) electrolysis is the electrolysis of water in a cell equipped with a solid polymer electrolyte (SPE) that is responsible for the conduction of protons, separation of product gases, and electrical insulation of the electrodes. The PEM electrolyzer was introduced to overcome the issues of partial load, low current density, and low pressure operation currently plaguing the alkaline electrolyzer. It involves a proton-exchange membrane.
Mixed conductors, also known as mixed ion-electron conductors(MIEC), are a single-phase material that has significant conduction ionically and electronically. Due to the mixed conduction, a formally neutral species can transport in a solid and therefore mass storage and redistribution are enabled. Mixed conductors are well known in conjugation with high-temperature superconductivity and are able to capacitate rapid solid-state reactions.
A reversible solid oxide cell (rSOC) is a solid-state electrochemical device that is operated alternatively as a solid oxide fuel cell (SOFC) and a solid oxide electrolysis cell (SOEC). Similarly to SOFCs, rSOCs are made of a dense electrolyte sandwiched between two porous electrodes. Their operating temperature ranges from 600°C to 900°C, hence they benefit from enhanced kinetics of the reactions and increased efficiency with respect to low-temperature electrochemical technologies.
Anion exchange membrane(AEM) electrolysis is the electrolysis of water that utilises a semipermeable membrane that conducts hydroxide ions (OH−) called an anion exchange membrane. Like a proton-exchange membrane (PEM), the membrane separates the products, provides electrical insulation between electrodes, and conducts ions. Unlike PEM, AEM conducts hydroxide ions. The major advantage of AEM water electrolysis is that a high-cost noble metal catalyst is not required, low-cost transition metal catalyst can be used instead. AEM electrolysis is similar to alkaline water electrolysis, which uses a non-ion-selective separator instead of an anion-exchange membrane.