Prototheca

Last updated

Prototheca
Prototheca wickerhamii.gif
Scientific classification OOjs UI icon edit-ltr.svg
(unranked): Viridiplantae
Division: Chlorophyta
Class: Trebouxiophyceae
Order: Chlorellales
Family: Chlorellaceae
Genus: Prototheca
Krüger, 1894 [1]
Species [2]

Prototheca is a genus of algae in the family Chlorellaceae. [3] While taxonomy classifies this genus as member of the green algae, all species in this genus have lost their chloroplasts and thus forfeited their photosynthetic ability. Some species can cause protothecosis in humans and various vertebratae.

Contents

Etymology

From the Greek proto- (first) + thēkē (sheath), Prototheca is a genus of variably shaped spherical cells of achloric algae in the family Chlorellaceae. Wilhelm Krüger, a German expert in plant physiology and sugar production, reported Prototheca microorganisms in 1894, shortly after spending 7 years in Java studying sugarcane. He isolated Prototheca species from the sap of 3 tree species. Krüger named these organisms as P. moriformis and P. zopfii, the second name as a tribute to Friedrich Wilhelm Zopf, a renowned botanist, mycologist, and lichenologist. [4]

Biology

With the lack of chloroplasts and photosynthetic ability, Prototheca species resort to heterotrophic growth and exhibit parasitism.

Pathogenicity

Some species in the genus Prototheca are known to cause protothecosis, one of the few researched diseases caused by algae, which are categorized as Algaemia. P. wickerhamii is the main causing agent of protothecosis in humans, and was first identified as such in 1964. P. zopfii is known to cause this disease in cattle and dogs.

Symptoms include: Cutaneous lesions, Olecranon bursitis.

Related Research Articles

<span class="mw-page-title-main">Algae</span> Diverse group of photosynthetic eukaryotic organisms

Algae is an informal term for a large and diverse group of photosynthetic, eukaryotic organisms. It is a polyphyletic grouping that includes species from multiple distinct clades. Included organisms range from unicellular microalgae, such as Chlorella, Prototheca and the diatoms, to multicellular forms, such as the giant kelp, a large brown alga which may grow up to 50 metres (160 ft) in length. Most are aquatic and lack many of the distinct cell and tissue types, such as stomata, xylem and phloem that are found in land plants. The largest and most complex marine algae are called seaweeds, while the most complex freshwater forms are the Charophyta, a division of green algae which includes, for example, Spirogyra and stoneworts. Algae that are carried by water are plankton, specifically phytoplankton.

<span class="mw-page-title-main">Chlorophyta</span> Phylum of green algae

Chlorophyta is a taxon of green algae informally called chlorophytes. The name is used in two very different senses, so care is needed to determine the use by a particular author. In older classification systems, it is a highly paraphyletic group of all the green algae within the green plants (Viridiplantae) and thus includes about 7,000 species of mostly aquatic photosynthetic eukaryotic organisms. In newer classifications, it is the sister clade of the streptophytes/charophytes. The clade Streptophyta consists of the Charophyta in which the Embryophyta emerged. In this latter sense the Chlorophyta includes only about 4,300 species. About 90% of all known species live in freshwater. Like the land plants, green algae contain chlorophyll a and chlorophyll b and store food as starch in their plastids.

<span class="mw-page-title-main">Plastid</span> Plant cell organelles that perform photosynthesis and store starch

The plastid is a membrane-bound organelle found in the cells of plants, algae, and some other eukaryotic organisms. They are considered to be intracellular endosymbiotic cyanobacteria. Examples include chloroplasts, chromoplasts, and leucoplasts.

<span class="mw-page-title-main">Sacoglossa</span> Clade of gastropods

Sacoglossa, commonly known as the sacoglossans or the "solar-powered sea slugs", are a superorder of small sea slugs and sea snails, marine gastropod mollusks that belong to the clade Heterobranchia. Sacoglossans live by ingesting the cellular contents of algae, hence they are sometimes called "sap-sucking sea slugs".

<span class="mw-page-title-main">Archaeplastida</span> Clade of eukaryotes containing land plants and some algae

The Archaeplastida are a major group of eukaryotes, comprising the photoautotrophic red algae (Rhodophyta), green algae, land plants, and the minor group glaucophytes. It also includes the non-photosynthetic lineage Rhodelphidia, a predatorial (eukaryotrophic) flagellate that is sister to the Rhodophyta, and probably the microscopic picozoans. The Archaeplastida have chloroplasts that are surrounded by two membranes, suggesting that they were acquired directly through a single endosymbiosis event by phagocytosis of a cyanobacterium. All other groups which have chloroplasts, besides the amoeboid genus Paulinella, have chloroplasts surrounded by three or four membranes, suggesting they were acquired secondarily from red or green algae. Unlike red and green algae, glaucophytes have never been involved in secondary endosymbiosis events.

<span class="mw-page-title-main">Dictyotales</span> Order of algae

Dictyotales is a large order in the brown algae containing the single family Dictyotaceae. Members of this order generally prefer warmer waters than other brown algae, and are prevalent in tropical and subtropical waters thanks to their many chemical defenses to ward off grazers. They display an isomorphic haplodiploid life cycle and are characterized by vegetative growth through a single apical cell. One genus in this order, Padina, is the only calcareous member of the brown algae.

<i>Elysia chlorotica</i> Species of gastropod

Elysia chlorotica is a small-to-medium-sized species of green sea slug, a marine opisthobranch gastropod mollusc. This sea slug superficially resembles a nudibranch, yet it does not belong to that clade. Instead it is a member of the clade Sacoglossa, the sap-sucking sea slugs. Some members of this group use chloroplasts from the algae they eat for photosynthesis, a phenomenon known as kleptoplasty. Elysia chlorotica is one species of such "solar-powered sea slugs". It lives in a subcellular endosymbiotic relationship with chloroplasts of the marine heterokont alga Vaucheria litorea.

<span class="mw-page-title-main">Eustigmatophyte</span> A small group of algae with marine, freshwater and soil-living species

Eustigmatophytes are a small group of eukaryotic forms of algae that includes marine, freshwater and soil-living species.

<span class="mw-page-title-main">Selenastraceae</span> Family of algae

Selenastraceae is a family of green algae in the order Sphaeropleales. Members of this family are common components of the phytoplankton in freshwater habitats worldwide. A few species have been found in brackish and marine habitats, such as in the Baltic Sea.

Dictyochloris is a genus of green algae in the class Chlorophyceae. It is the sole genus of the family Dictyochloridaceae. It is commonly found in terrestrial and subaerial habitats.

<i>Micromonas</i> Genus of algae

Micromonas is a genus of green algae in the family Mamiellaceae.

<span class="mw-page-title-main">Protozoan infection</span> Parasitic disease caused by a protozoan

Protozoan infections are parasitic diseases caused by organisms formerly classified in the kingdom Protozoa. These organisms are now classified in the supergroups Excavata, Amoebozoa, Harosa, and Archaeplastida. They are usually contracted by either an insect vector or by contact with an infected substance or surface.

<i>Karenia</i> (dinoflagellate) Genus of single-celled organisms

Karenia is a genus that consists of unicellular, photosynthetic, planktonic organisms found in marine environments. The genus currently consists of 12 described species. They are best known for their dense toxic algal blooms and red tides that cause considerable ecological and economical damage; some Karenia species cause severe animal mortality. One species, Karenia brevis, is known to cause respiratory distress and neurotoxic shellfish poisoning (NSP) in humans.

<span class="mw-page-title-main">Red algae</span> Division of plant life

Red algae, or Rhodophyta, are one of the oldest groups of eukaryotic algae. The Rhodophyta comprises one of the largest phyla of algae, containing over 7,000 currently recognized species with taxonomic revisions ongoing. The majority of species (6,793) are found in the Florideophyceae (class), and mostly consist of multicellular, marine algae, including many notable seaweeds. Red algae are abundant in marine habitats but relatively rare in freshwaters. Approximately 5% of red algae species occur in freshwater environments, with greater concentrations found in warmer areas. Except for two coastal cave dwelling species in the asexual class Cyanidiophyceae, there are no terrestrial species, which may be due to an evolutionary bottleneck in which the last common ancestor lost about 25% of its core genes and much of its evolutionary plasticity.

<i>Guillardia</i> Genus of single-celled organisms

Guillardia is a genus of marine biflagellate cryptomonad algae with a plastid obtained through secondary endosymbiosis of a red alga.

Algaemia is a secondary term that refers to the emerging condition in which green algae enter the bloodstream. Members of the genus Prototheca are the most common algae that leads to algaemia. Prototheca and Chlorella, which is extremely rare, are the only two known algae genera capable of inflicting disease on mammals, including humans, through invasion of host tissue. The majority of cases are observed in dairy cattle as a cause of bovine mastitis as well as other domesticated animals. Cases of algaemia have been observed in dogs and cats as well. Few cases have been observed in humans. Human cases of algaemia or, protothecosis, are examined on a case-by-case basis due to the particularity of each case. Protothecosis infection is classified based on the symptoms: (i) cutaneous lesions, (ii) olecranon bursitis, and (iii) disseminated or systemic type infections.

Mesodinium chamaeleon is a ciliate of the genus Mesodinium. It is known for being able to consume and maintain algae endosymbiotically for days before digesting the algae. It has the ability to eat red and green algae, and afterwards using the chlorophyll granules from the algae to generate energy, turning itself from being a heterotroph into an autotroph. The species was discovered in January 2012 outside the coast of Nivå, Denmark by professor Øjvind Moestrup.

Prototheca zopfii is an ubiquitous achlorophyllic green alga. It is a known cause of mastitis in cattle.

<i>Costasiella ocellifera</i> Species of gastropod

Costasiella ocellifera is a small (5–13 mm) species of sea slug, a shell-less marine gastropod mollusk in the family Costasiellidae. Costasiella ocellifera, and other members of the Costasiellidae family are often mistakenly classified as nudibranchs because they superficially resemble other species of that group, but they are actually a part of the Sacoglossa superorder of sea slugs, also known as the “sap-sucking sea slugs,” "crawling leaves" or the "solar-powered sea slugs." C. ocellifera was discovered by Simroth in 1895, and was initially classified as Doto ocellifera. The Brazilian species, Costasiella liliana, is a synonym of C. ocellifera.Costasiella ocellifera shows long-term retention of functional kleptoplasty.

Chlorellosis is a disease caused by the infection of Chlorella, a type of microalgae containing large amount of chloroplasts. It is mainly found in sheep and cattle, while cases in humans, dogs, antelopes, beavers, camels and fish, were also reported. Symptoms of Chlorellosis including focal cutaneous lesions, lymphadenitis, and peritonitis.

References

  1. Krüger, W. (1894). Kurze Charakteristik einiger niedrerer Organismen im Saftfluss der Laubbäume. Hedwigia 33: 241-266, .
  2. Jagielskia T, Bakułaa Z, Gaworb J, Maciszewskic K, Kusberd W, Dyląge M, Nowakowskaf J, Gromadkab R, Karnkowskac A (2019). "The genus Prototheca (Trebouxiophyceae, Chlorophyta) revisited: Implications from molecular taxonomic studies". Algal Research. 43. doi:10.1016/j.algal.2019.101639.
  3. See the NCBI webpage on Prototheca. Data extracted from the "NCBI taxonomy resources". National Center for Biotechnology Information . Retrieved 2007-03-19.
  4. Ollhoff, Rüdiger D.; Sellera, Fábio P.; Pogliani, Fabio C. (November 2021). "Early Release -Etymologia: Prototheca". Emerg Infect Dis. 27 (11). doi: 10.3201/eid2711.211554 . Retrieved October 8, 2021. Citing public domain text from the CDC.