Pseudochromis fuscus

Last updated

Pseudochromis fuscus
PseudochromisFuscus2RLS.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Actinopterygii
Family: Pseudochromidae
Genus: Pseudochromis
Species:
P. fuscus
Binomial name
Pseudochromis fuscus
Müller & Troschel, 1849
A dusky dottyback, Pseudochromis fuscus, at Ningaloo Reef, Western Australia. PseudochromFuscRLS.jpg
A dusky dottyback, Pseudochromis fuscus, at Ningaloo Reef, Western Australia.

Pseudochromis fuscus is a species of saltwater fish in the dottyback family. Dottybacks are generally very bright in color and relatively small, factors which have made them popular among aquarium enthusiasts. Besides their coloration and size, they are probably best known for their aggressive temperament. [1] While many of the more common dottybacks are in the Pseudochromis genus, there are also species in other genera. [2] Common names for this particular species include the brown dottyback, the golden dottyback, and the musky dottyback. [3] The common name “Golden dottyback” is shared with another species of dottyback, the Pseudochromis pseudoplesiopinae. [4] The species name, fuscus, means dark or dusky in Latin. [5]

Contents

Description

Brown dottybacks grow to a maximum length of about 10 centimeters and they have three dorsal spines, several dorsal soft rays, three anal spines and a few anal soft rays. The spine count is what distinguishes them from their close neighbor, the true basses from the family Serranidae. [6] Like most dottybacks, they are very long and slender. [7] [8] They are also the largest species within the genus Pseudochromis. Brown dottybacks have pear-shaped eyes, not unlike bass, and canine teeth. [9] Color usually ranges from bright yellow to dark brown, but orange, pink, and gray fish of this species have been found as well. [10] [11] Blue spots can often be seen on the nape and the anterior part of the body. [12] Studies have shown that the color differences in wild brown dottybacks are not due to genetic changes. In fact, individuals seem to be able to change their color, though the factors causing color changes are undetermined. The shade of yellow or brown that a dottyback displays seems to correlate with the shade of prey that a dottyback targets. For example, brown dottybacks with a bright yellow coloration are more likely to be found near prey with a bright yellow coloration. [13] [14] Brighter brown dottybacks are also more likely to be found in deeper areas, while their browner cousins are more likely to be found in shallower areas. [15]

Taxonomy

Pseudochromis fuscus is a member of the family Pseudochromidae, which includes other dottybacks like the purple dottyback (Pseudochromis porphyreus) and the bluelined dottyback (Pseudochromis cyanotaenia). [16] Pseudochromidae are members of the suborder Percoidei, which falls under the order Perciformes. [17] [18] This is a very large order that includes many of the bony fish in the ocean. In fact, Perciformes is the largest order of vertebrates, with over 10,000 species. [19] Perciformes is in the class Actinopterygii, which, is in the superclass Pisces. Pisces is in the phylum Chordata, which is in the kingdom Animalia. [20] [21] [22] [23] [24]

Distribution

Pseudochromis fuscus is native to the south-western Pacific Ocean and the eastern Indian Ocean. [25] Its range is from Sri Lanka east to Vanuatu and from Australia north to Hong Kong. [26] A map showing the distribution of this fish can be seen here, with red spots showing the range of this dottyback. As is shown on the map, the southern limit of the distribution stops at about the southern limit of the reefs off the eastern coast of Australia. This is because the brown dottyback is most often found in coral reef habitats. [27]

Habitat

Pseudochromis fuscus is a very common fish on coral reefs. It can make up as much as 10% of the piscivorous fishes in the community, [28] with competing predators consisting of fish like the moon wrasse or lizardfish. [29] [30] The brown dottyback is often found in crevices or ledges. It is also often found swimming near branching corals. [31]

Diet

Pseudochromis fuscus is a carnivorous fish that often feeds on juvenile coral reef fish or crustaceans, though they also will feed on mollusks. Typically, juvenile fish are only targeted for predation during the summer, as the survivors outgrow their vulnerability to dottyback predation by the winter. [32] [33] [34] Common predatory targets include many species of damselfish. [35] [36] [37] [38] [39] [40] Unlike other species of competing piscivors, predation of juvenile fish by the brown dottyback is not affected by the presence of adult males guarding the juveniles. Sometimes, adult male damselfish will guard the nests of their young. While this reduces predation on the young by other predators, predation by dottyback appears to be unaffected. [41] Because of this predatory behavior, the brown dottyback is considered an important regulator of the composition of the coral reef community. [42]

Behavior

The brown dottyback is a very aggressive predatory fish, and therefore, most of the behavioral research conducted on it relates to the predatory relationship that this fish has with others in the coral reef community. Brown dottybacks appear to preferentially prey on fish with longer bodies, an observation which is consistent with the optimal foraging theory. [43] While long body types were preferred in prey, various studies have conflicting results when examining the effects of overall prey size on targeting. Some studies have found that brown dottybacks prefer larger prey, [44] while others have found that smaller prey are preferred. [45] Brown dottybacks also appear to target rare fish for predation more often than common fish. [46] [47] Preference is also given to targeting prey in good condition over prey in bad condition, a distinction that is often made through chemical cues. In fact, it appears as though chemical signals are the primary means by which a foraging response is stimulated. [48] Predatory behavior also increases for brown dottybacks in a bleached coral reef environment, as the lack of coloration of the coral makes it easier for the predators to detect their prey. [49]

Aquaria

Pseudochromis fuscus, along with many other species in the dottyback family, are often kept as aquarium fish. These fish are as aggressive in captivity as they are in the wild, so brown dottybacks are often kept with fish that will not disturb their territory or they are kept completely separate from other fish. For this reason, it is very important to have only one brown dottyback in a tank. Because this fish is so large relative to other dottybacks, the brown dottyback is even more of a bully than the other aggressive species within the genus Pseudochromis. Still, they are a relatively easy fish to keep in captivity, and they can be kept with larger fish like adult damselfish or parrotfish. It is best to feed brown dottybacks with finely chopped meaty foods, like krill or squid, but this fish will also adapt to eating flakes, pellets, and herbivorous foods. Special attention must be given to the choice of foods, because the brown dottyback's diet will affect its coloration. This is why a diet high in vitamins is recommended, as this diet should maintain a rich golden color. Another important consideration for a tank containing a brown dottyback is the need for rocky ledges, crevices, and caves. [50]

Related Research Articles

<span class="mw-page-title-main">Wrasse</span> Family of marine fishes

The wrasses are a family, Labridae, of marine fish, many of which are brightly colored. The family is large and diverse, with over 600 species in 81 genera, which are divided into 9 subgroups or tribes. They are typically small, most of them less than 20 cm (7.9 in) long, although the largest, the humphead wrasse, can measure up to 2.5 m (8.2 ft). They are efficient carnivores, feeding on a wide range of small invertebrates. Many smaller wrasses follow the feeding trails of larger fish, picking up invertebrates disturbed by their passing. Juveniles of some representatives of the genera Bodianus, Epibulus, Cirrhilabrus, Oxycheilinus, and Paracheilinus hide among the tentacles of the free-living mushroom corals and Heliofungia actiniformis.

Coral Reefs is a quarterly peer-reviewed scientific journal dedicated to the study of coral reefs. It was established in 1982 and is published by Springer Science+Business Media on behalf of the International Society for Reef Studies, of which it is the official journal. This journal also acts as the International Coral Reef Society. The editor-in-chief is Morgan Pratchett. They have published multiple in-depth articles covering coral reef topics such as conservation of coral reef fishes and different approaches that capture the complexity of coral reefs when examining canopy-forming organisms. According to the Journal Citation Reports, the journal has a 2017 impact factor of 3.095. According to Springer the journal has a 2020 impact factor of 3.902, five year impact factor of 3.880, and as of 2021 has 454,744 downloads.

<span class="mw-page-title-main">Crown-of-thorns starfish</span> Species of starfish

The crown-of-thorns starfish, Acanthaster planci, is a large starfish that preys upon hard, or stony, coral polyps (Scleractinia). The crown-of-thorns starfish receives its name from venomous thorn-like spines that cover its upper surface, resembling the biblical crown of thorns. It is one of the largest starfish in the world.

<span class="mw-page-title-main">Mimic octopus</span> Indo-Pacific species of octopus capable of impersonating local species

The mimic octopus is a species of octopus from the Indo-Pacific region. Like other octopuses, it uses its chromatophores to disguise itself with its background. However, it is noteworthy for being able to impersonate a wide variety of other marine animals. Although many animals mimic either their environment or other animals to avoid predation, the mimic octopus and its close relative the wunderpus are the only ones known to actively imitate several animals in order to elude predators.

<span class="mw-page-title-main">Red lionfish</span> Species of fish

The red lionfish is a venomous coral reef fish in the family Scorpaenidae, order Scorpaeniformes. It is mainly native to the Indo-Pacific region, but has become an invasive species in the Caribbean Sea, as well as along the East Coast of the United States and East Mediterranean and also found in Brazil at Fernando de Noronha.

<span class="mw-page-title-main">Dottyback</span> Family of fishes

The dottybacks are a family, Pseudochromidae, of fishes which were formerly classified in the order Perciformes, but this has been revised and the family is regarded as of uncertain affinities, or incertae sedis within the Ovalentaria, a clade within the Percomorpha. Around 152 species belong to this family.

<span class="mw-page-title-main">Fourspot butterflyfish</span> Species of fish

The four-spotted butterflyfish or fourspot butterflyfish is a species of butterflyfish found in the Pacific Ocean from the Ryukyus, Ogasawara (Bonin) Islands and Taiwan to the Hawaiian, Marquesan, and Pitcairn islands, south to the Samoan and Austral Islands and the Marianas and Marshall Islands in Micronesia.

<span class="mw-page-title-main">Ambush predator</span> Predator that sits and waits for prey to come to it

Ambush predators or sit-and-wait predators are carnivorous animals that capture or trap prey via stealth, luring or by strategies utilizing an element of surprise. Unlike pursuit predators, who chase to capture prey using sheer speed or endurance, ambush predators avoid fatigue by staying in concealment, waiting patiently for the prey to get near, before launching a sudden overwhelming attack that quickly incapacitates and captures the prey.

Marine larval ecology is the study of the factors influencing dispersing larvae, which many marine invertebrates and fishes have. Marine animals with a larva typically release many larvae into the water column, where the larvae develop before metamorphosing into adults.

<i>Pseudochromis</i> Genus of fishes

Pseudochromis is a genus of fish in the family Pseudochromidae found in Indian and Pacific Ocean.

<i>Pomacentrus moluccensis</i> Species of fish

Pomacentrus moluccensis, the lemon damselfish, is a species of bony fish in the family Pomacentridae, from the Western Pacific Ocean. It occasionally makes its way into the aquarium trade. It grows to a size of 9 cm (4 in) in length.

<span class="mw-page-title-main">Coral reef fish</span> Fish which live amongst or in close relation to coral reefs

Coral reef fish are fish which live amongst or in close relation to coral reefs. Coral reefs form complex ecosystems with tremendous biodiversity. Among the myriad inhabitants, the fish stand out as colourful and interesting to watch. Hundreds of species can exist in a small area of a healthy reef, many of them hidden or well camouflaged. Reef fish have developed many ingenious specialisations adapted to survival on the reefs.

<i>Gobiodon histrio</i> Species of fish

Gobiodon histrio, the Broad-barred goby, is a species of goby native to the Indian Ocean from the Red Sea to the western Pacific Ocean to southern Japan, Samoa and the Great Barrier Reef. This species is a reef dweller, being found at depths of from 2 to 15 metres. It can reach a length of 3.5 centimetres (1.4 in) TL. This species can also be found in the aquarium trade.

<span class="mw-page-title-main">Refuge (ecology)</span> Place where an organism is protected from predation

A refuge is a concept in ecology, in which an organism obtains protection from predation by hiding in an area where it is inaccessible or cannot easily be found. Due to population dynamics, when refuges are available, populations of both predators and prey are significantly higher, and significantly more species can be supported in an area.

<i>Diploria</i> Genus of corals

Diploria is a monotypic genus of massive reef building stony corals in the family Mussidae. It is represented by a single species, Diploria labyrinthiformis, commonly known as grooved brain coral and is found in the western Atlantic Ocean and Caribbean Sea. It has a familiar, maze-like appearance.

<i>Pterois</i> Genus of venomous fish

Pterois is a genus of venomous marine fish, commonly known as lionfish, native to the Indo-Pacific. It is characterized by conspicuous warning coloration with red or black bands, and ostentatious dorsal fins tipped with venomous spines. Pterois radiata, Pterois volitans, and Pterois miles are the most commonly studied species in the genus. Pterois species are popular aquarium fish. P. volitans and P. miles are recent and significant invasive species in the west Atlantic, Caribbean Sea and Mediterranean Sea.

<span class="mw-page-title-main">Mesophotic coral reef</span>

A Mesophotic coral reef or mesophotic coral ecosystem (MCE), originally from the Latin word meso (meaning middle) and photic (meaning light), is characterised by the presence of both light-dependent coral and algae, and organisms that can be found in water with low light penetration. Mesophotic Coral Ecosystem (MCEs) is a new, widely-adopted term used to refer to mesophotic coral reefs, as opposed to other similar terms like "deep coral reef communities" and "twilight zone", since those terms sometimes are confused due to their unclear, interchangeable nature.

<span class="mw-page-title-main">Corallivore</span> Animal that feeds on coral

A corallivore is an animal that feeds on coral. Corallivores are an important group of reef organism because they can influence coral abundance, distribution, and community structure. Corallivores feed on coral using a variety of unique adaptations and strategies. Known corallivores include certain mollusks, annelids, fish, crustaceans, flatworms and echinoderms. The first recorded evidence of corallivory was presented by Charles Darwin in 1842 during his voyage on HMS Beagle in which he found coral in the stomach of two Scarus parrotfish.

<span class="mw-page-title-main">Pseudochrominae</span> Subfamily of fishes

Pseudochrominae is a subfamily of ray-finned fishes, one of four subfamilies that make up the family Pseudochromidae, the species within the subfamily are commonly called dottybacks. They are small reef-associated marine fish which have an Indo-Pacific distribution.

Pseudochromis pylei, Pyle's dottyback, is a species of ray-finned fish from the western central Pacific Ocean, which is a member of the family Pseudochromidae. This species reaches a length of 8.0 cm (3.1 in).

References

  1. V. Messmer, G. P. Jones, L. van Herwerden, P. L. Munday, Genetic and ecological characterisation of colour dimorphism in a coral reef fish. Environmental Biology of Fishes 74, 175-183 (2005); published online EpubOct (10.1007/s10641-005-7430-8).
  2. H. C. Schultz, in Reefkeeping. (2008).
  3. J. E. Randall, G. R. Allen, R. C. Steene, in fishbase.org. (University of Hawaii Press, Honolulu, Hawaii, 1990).
  4. M. Goren, M. Dor, in Fishbase.org. (The Israel Academy of Sciences and Humanities, Jerusalem, Israel, 1994).
  5. J. E. Randall, G. R. Allen, R. C. Steene, in fishbase.org. (University of Hawaii Press, Honolulu, Hawaii, 1990).
  6. B. Fenner, in Wet Web Media.
  7. J. E. Randall, G. R. Allen, R. C. Steene, in fishbase.org. (University of Hawaii Press, Honolulu, Hawaii, 1990).
  8. A. Ryanskiy, in diveplanet. (2013).
  9. B. Fenner, in Wet Web Media.
  10. A. Ryanskiy, in diveplanet. (2013).
  11. V. Messmer, L. van Herwerden, P. L. Munday, G. P. Jones, Phylogeography of colour polymorphism in the coral reef fish Pseudochromis fuscus, from Papua New Guinea and the Great Barrier Reef. Coral Reefs 24, 392-402 (2005); published online EpubNov (10.1007/s00338-005-0001-9).
  12. E. E. Capuli, R. R. Valdestamon, in Discover Life (2012).
  13. V. Messmer, G. P. Jones, L. van Herwerden, P. L. Munday, Genetic and ecological characterisation of colour dimorphism in a coral reef fish. Environmental Biology of Fishes 74, 175-183 (2005); published online EpubOct (10.1007/s10641-005-7430-8).
  14. P. L. Munday, P. J. Eyre, G. P. Jones, Ecological mechanisms for coexistence of colour polymorphism in a coral-reef fish: an experimental evaluation. Oecologia 137, 519-526 (2003); published online EpubDec (10.1007/s00442-003-1356-7).
  15. P. L. Munday, P. J. Eyre, G. P. Jones, Ecological mechanisms for coexistence of colour polymorphism in a coral-reef fish: an experimental evaluation. Oecologia 137, 519-526 (2003); published online EpubDec (10.1007/s00442-003-1356-7).
  16. UniProt, in UniProt Taxonomy.
  17. UniProt, in UniProt Taxonomy.
  18. N. Bailly, in World Register of Marine Species. (2008).
  19. N. Weisz, in Encyclopedia of Life.
  20. UniProt, in UniProt Taxonomy.
  21. N. Bailly, in World Register of Marine Species. (2008).
  22. M. Hayashi, First record of Pseudochromis fuscus (Pisces: Pseudochromidae) from Ryukyu Islands, southern Japan. Science Report of the Yokosuka City Museum 40, 65-68 (1992); published online EpubDecember
  23. P. Myers, R. Espinosa, C. S. Parr, T. Jones, G. S. Hammond, T. A. Dewey, in The Animal Diversity Web. (2013).
  24. G. S. Myers, Some forgotten but available names for Indian fishes. Stanford Ichthyol Bull 4, 26-26 (1951); published online Epub1951
  25. W. E. Feeney, O. M. Loennstedt, Y. Bosiger, J. Martin, G. P. Jones, R. J. Rowe, M. I. McCormick, High rate of prey consumption in a small predatory fish on coral reefs. Coral Reefs 31, 909-918 (2012); published online EpubSep (10.1007/s00338-012-0894-z).
  26. J. E. Randall, G. R. Allen, R. C. Steene, in fishbase.org. (University of Hawaii Press, Honolulu, Hawaii, 1990).
  27. W. E. Feeney, O. M. Loennstedt, Y. Bosiger, J. Martin, G. P. Jones, R. J. Rowe, M. I. McCormick, High rate of prey consumption in a small predatory fish on coral reefs. Coral Reefs 31, 909-918 (2012); published online EpubSep (10.1007/s00338-012-0894-z).
  28. W. E. Feeney, O. M. Loennstedt, Y. Bosiger, J. Martin, G. P. Jones, R. J. Rowe, M. I. McCormick, High rate of prey consumption in a small predatory fish on coral reefs. Coral Reefs 31, 909-918 (2012); published online EpubSep (10.1007/s00338-012-0894-z).
  29. W. E. Feeney, O. M. Loennstedt, Y. Bosiger, J. Martin, G. P. Jones, R. J. Rowe, M. I. McCormick, High rate of prey consumption in a small predatory fish on coral reefs. Coral Reefs 31, 909-918 (2012); published online EpubSep (10.1007/s00338-012-0894-z).
  30. P. L. Munday, D. L. Dixson, M. I. McCormick, M. Meekan, M. C. O. Ferrari, D. P. Chivers, Replenishment of fish populations is threatened by ocean acidification. Proceedings of the National Academy of Sciences of the United States of America 107, 12930-12934 (2010); published online EpubJul 20 (10.1073/pnas.1004519107).
  31. J. E. Randall, G. R. Allen, R. C. Steene, in fishbase.org. (University of Hawaii Press, Honolulu, Hawaii, 1990).
  32. W. E. Feeney, O. M. Loennstedt, Y. Bosiger, J. Martin, G. P. Jones, R. J. Rowe, M. I. McCormick, High rate of prey consumption in a small predatory fish on coral reefs. Coral Reefs 31, 909-918 (2012); published online EpubSep (10.1007/s00338-012-0894-z).
  33. O. M. Loennstedt, M. I. McCormick, D. P. Chivers, Degraded Environments Alter Prey Risk Assessment. Ecology and Evolution 3, 38-47 (2013); published online EpubJan
  34. G. R. Almany, Priority effects in coral reef fish communities of the Great Barrier Reef. Ecology 85, 2872-2880 (2004); published online EpubOct (10.1890/03-3166).
  35. O. M. Loennstedt, M. I. McCormick, D. P. Chivers, Predator-induced changes in the growth of eyes and false eyespots. Scientific Reports 3, (2013); published online EpubJul 25 (10.1038/srep02259).
  36. C. S. Couturier, J. A. W. Stecyk, J. L. Rummer, P. L. Munday, G. E. Nilsson, Species-specific effects of near-future CO2 on the respiratory performance of two tropical prey fish and their predator. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 166, 482-489 (2013); published online Epub2013-Nov (10.1016/j.cbpa.2013.07.025).
  37. A. S. Wenger, M. I. McCormick, I. M. McLeod, G. P. Jones, Suspended sediment alters predator-prey interactions between two coral reef fishes. Coral Reefs 32, 369-374 (2013); published online EpubJun (10.1007/s00338-012-0991-z).
  38. R. P. Manassa, M. I. McCormick, Social learning improves survivorship at a life-history transition. Oecologia 171, 845-852 (2013); published online EpubApr (10.1007/s00442-012-2458-x).
  39. J. S. Beukers, G. P. Jones, Habitat complexity modifies the impact of piscivores on a coral reef fish population. Oecologia 114, 50-59 (1998); published online EpubMar (10.1007/s004420050419).
  40. R. P. Manassa, M. I. McCormick, D. P. Chivers, Socially acquired predator recognition in complex ecosystems. Behavioral Ecology and Sociobiology 67, 1033-1040 (2013); published online EpubJul (10.1007/s00265-013-1528-3).
  41. M. I. McCormick, M. G. Meekan, Social facilitation of selective mortality. Ecology 88, 1562-1570 (2007); published online EpubJun (10.1890/06-0830).
  42. O. M. Loennstedt, M. I. McCormick, D. P. Chivers, Predator-induced changes in the growth of eyes and false eyespots. Scientific Reports 3, (2013); published online EpubJul 25 (10.1038/srep02259).
  43. T. H. Holmes, M. I. McCormick, Influence of prey body characteristics and performance on predator selection. Oecologia 159, 401-413 (2009); published online EpubMar (10.1007/s00442-008-1220-x).
  44. T. H. Holmes, M. I. McCormick, Size-selectivity of predatory reef fish on juvenile prey. Marine Ecology Progress Series 399, 273-283 (2010); published online Epub2010 (10.3354/meps08337).
  45. O. M. Lonnstedt, M. I. McCormick, D. P. Chivers, Well-informed foraging: damage-released chemical cues of injured prey signal quality and size to predators. Oecologia 168, 651-658 (2012); published online EpubMar (10.1007/s00442-011-2116-8).
  46. G. R. Almany, L. F. Peacock, C. Syms, M. I. McCormick, G. P. Jones, Predators target rare prey in coral reef fish assemblages. Oecologia 152, 751-761 (2007); published online EpubJul (10.1007/s00442-007-0693-3).
  47. G. R. Almany, M. S. Webster, Odd species out as predators reduce diversity of coral-reef fishes. Ecology 85, 2933-2937 (2004); published online EpubNov (10.1890/03-3150).
  48. O. M. Lonnstedt, M. I. McCormick, D. P. Chivers, Well-informed foraging: damage-released chemical cues of injured prey signal quality and size to predators. Oecologia 168, 651-658 (2012); published online EpubMar (10.1007/s00442-011-2116-8).
  49. D. J. Coker, M. S. Pratchett, P. L. Munday, Coral bleaching and habitat degradation increase susceptibility to predation for coral-dwelling fishes. Behavioral Ecology 20, 1204-1210 (2009); published online EpubNov-Dec (10.1093/beheco/arp113).
  50. A. Ryanskiy, in diveplanet. (2013).