Pyrometallurgy

Last updated

Pyrometallurgy is a branch of extractive metallurgy. It consists of the thermal treatment of minerals and metallurgical ores and concentrates to bring about physical and chemical transformations in the materials to enable recovery of valuable metals. [1] Pyrometallurgical treatment may produce products able to be sold such as pure metals, or intermediate compounds or alloys, suitable as feed for further processing. Examples of elements extracted by pyrometallurgical processes include the oxides of less reactive elements like iron, copper, zinc, chromium, tin, and manganese. [2]

Contents

Pyrometallurgical processes are generally grouped into one or more of the following categories: [3]

Most pyrometallurgical processes require energy input to sustain the temperature at which the process takes place. The energy is usually provided in the form of combustion or from electrical heat. When sufficient material is present in the feed to sustain the process temperature solely by exothermic reaction (i.e. without the addition of fuel or electrical heat), the process is said to be "autogenous". Processing of some sulfide ores exploit the exothermicity of their combustion

Calcination

Calcination is thermal decomposition of a material. Examples include decomposition of hydrates such as ferric hydroxide to ferric oxide and water vapor, the decomposition of calcium carbonate to calcium oxide and carbon dioxide as well as iron carbonate to iron oxide:

CaCO3 → CaO + CO2

Calcination processes are carried out in a variety of furnaces, including shaft furnaces, rotary kilns, and fluidized bed reactors.

Roasting

Roasting consists of thermal gas–solid reactions, which can include oxidation, reduction, chlorination, sulfation, and pyrohydrolysis.

The most common example of roasting is the oxidation of metal sulfide ores. The metal sulfide is heated in the presence of air to a temperature that allows the oxygen in the air to react with the sulfide to form sulfur dioxide gas and solid metal oxide. The solid product from roasting is often called "calcine". In oxidizing roasting, if the temperature and gas conditions are such that the sulfide feed is completely oxidized, the process is known as "dead roasting". Sometimes, as in the case of pre-treating reverberatory or electric smelting furnace feed, the roasting process is performed with less than the required amount of oxygen to fully oxidize the feed. In this case, the process is called "partial roasting" because the sulfur is only partially removed. Finally, if the temperature and gas conditions are controlled such that the sulfides in the feed react to form metal sulfates instead of metal oxides, the process is known as "sulfation roasting". Sometimes, temperature and gas conditions can be maintained such that a mixed sulfide feed (for instance a feed containing both copper sulfide and iron sulfide) reacts such that one metal forms a sulfate and the other forms an oxide, the process is known as "selective roasting" or "selective sulfation".

Smelting

Smelting involves thermal reactions in which at least one product is a molten phase.

Metal oxides can then be smelted by heating with coke or charcoal (forms of carbon), a reducing agent that liberates the oxygen as carbon dioxide leaving a refined mineral. Concern about the production of carbon dioxide is only a recent worry, following the identification of the enhanced greenhouse effect.

Carbonate ores are also smelted with charcoal, but sometimes need to be calcined first.[ citation needed ]

Other materials may need to be added as flux, aiding the melting of the oxide ores and assisting in the formation of a slag, as the flux reacts with impurities, such as silicon compounds.[ citation needed ]

Smelting usually takes place at a temperature above the melting point of the metal, but processes vary considerably according to the ore involved and other matters.[ citation needed ]

Refining

Refining is the removal of impurities from materials by a thermal process. This covers a wide range of processes, involving different kinds of furnace or other plant.

The term "refining" can also refer to certain electrolytic processes. Accordingly, some kinds of pyrometallurgical refining are referred to as "fire refining".

See also

Related Research Articles

<span class="mw-page-title-main">Smelting</span> Use of heat and a reducing agent to extract metal from ore

Smelting is a process of applying heat to ore, to extract a base metal. It is a form of extractive metallurgy. It is used to extract many metals from their ores, including silver, iron, copper, and other base metals. Smelting uses heat and a chemical reducing agent to decompose the ore, driving off other elements as gases or slag and leaving the metal base behind. The reducing agent is commonly a fossil fuel source of carbon, such as coke—or, in earlier times, charcoal. The oxygen in the ore binds to carbon at high temperatures due to the lower potential energy of the bonds in carbon dioxide. Smelting most prominently takes place in a blast furnace to produce pig iron, which is converted into steel.

Extractive metallurgy is a branch of metallurgical engineering wherein process and methods of extraction of metals from their natural mineral deposits are studied. The field is a materials science, covering all aspects of the types of ore, washing, concentration, separation, chemical processes and extraction of pure metal and their alloying to suit various applications, sometimes for direct use as a finished product, but more often in a form that requires further working to achieve the given properties to suit the applications.

<span class="mw-page-title-main">Steelmaking</span> Process for producing steel from iron ore and scrap

Steelmaking is the process of producing steel from iron ore and/or scrap. In steelmaking, impurities such as nitrogen, silicon, phosphorus, sulfur and excess carbon are removed from the sourced iron, and alloying elements such as manganese, nickel, chromium, carbon and vanadium are added to produce different grades of steel. Limiting dissolved gases such as nitrogen and oxygen and entrained impurities in the steel is also important to ensure the quality of the products cast from the liquid steel.

<span class="mw-page-title-main">Slag</span> By-product of smelting ores and used metals

Slag is a by-product of smelting (pyrometallurgical) ores and used metals. Broadly, it can be classified as ferrous, ferroalloy or non-ferrous/base metals. Within these general categories, slags can be further categorized by their precursor and processing conditions.

<span class="mw-page-title-main">Industrial processes</span> Process of producing goods

Industrial processes are procedures involving chemical, physical, electrical or mechanical steps to aid in the manufacturing of an item or items, usually carried out on a very large scale. Industrial processes are the key components of heavy industry.

<span class="mw-page-title-main">Copper extraction</span> Process of extracting copper from the ground

Copper extraction refers to the methods used to obtain copper from its ores. The conversion of copper consists of a series of physical and electrochemical processes. Methods have evolved and vary with country depending on the ore source, local environmental regulations, and other factors.

Calcination refers to thermal treatment of a solid chemical compound (e.g. mixed carbonate ores) whereby the compound is raised to high temperature without melting under restricted supply of ambient oxygen (i.e. gaseous O2 fraction of air), generally for the purpose of removing impurities or volatile substances and/or to incur thermal decomposition.

<span class="mw-page-title-main">Reverberatory furnace</span> Metallurgical furnace

A reverberatory furnace is a metallurgical or process furnace that isolates the material being processed from contact with the fuel, but not from contact with combustion gases. The term reverberation is used here in a generic sense of rebounding or reflecting, not in the acoustic sense of echoing.

An Ellingham diagram is a graph showing the temperature dependence of the stability of compounds. This analysis is usually used to evaluate the ease of reduction of metal oxides and sulfides. These diagrams were first constructed by Harold Ellingham in 1944. In metallurgy, the Ellingham diagram is used to predict the equilibrium temperature between a metal, its oxide, and oxygen — and by extension, reactions of a metal with sulfur, nitrogen, and other non-metals. The diagrams are useful in predicting the conditions under which an ore will be reduced to its metal. The analysis is thermodynamic in nature and ignores reaction kinetics. Thus, processes that are predicted to be favourable by the Ellingham diagram can still be slow.

In ore deposit geology, supergene processes or enrichment are those that occur relatively near the surface as opposed to deep hypogene processes. Supergene processes include the predominance of meteoric water circulation (i.e. water derived from precipitation) with concomitant oxidation and chemical weathering. The descending meteoric waters oxidize the primary (hypogene) sulfide ore minerals and redistribute the metallic ore elements. Supergene enrichment occurs at the base of the oxidized portion of an ore deposit. Metals that have been leached from the oxidized ore are carried downward by percolating groundwater, and react with hypogene sulfides at the supergene-hypogene boundary. The reaction produces secondary sulfides with metal contents higher than those of the primary ore. This is particularly noted in copper ore deposits where the copper sulfide minerals chalcocite (Cu2S), covellite (CuS), digenite (Cu18S10), and djurleite (Cu31S16) are deposited by the descending surface waters.

<span class="mw-page-title-main">Roasting (metallurgy)</span> Process of heating a sulfide ore

Roasting is a process of heating a sulfide ore to a high temperature in the presence of air. It is a step in the processing of certain ores. More specifically, roasting is often a metallurgical process involving gas–solid reactions at elevated temperatures with the goal of purifying the metal component(s). Often before roasting, the ore has already been partially purified, e.g. by froth flotation. The concentrate is mixed with other materials to facilitate the process. The technology is useful in making certain ores usable but it can also be a serious source of air pollution.

In metallurgy, refining consists of purifying an impure metal. It is to be distinguished from other processes such as smelting and calcining in that those two involve a chemical change to the raw material, whereas in refining, the final material is usually identical chemically to the original one, only it is purer. The processes used are of many types, including pyrometallurgical and hydrometallurgical techniques.

Mount Isa Mines Limited ("MIM") operates the Mount Isa copper, lead, zinc and silver mines near Mount Isa, Queensland, Australia as part of the Glencore group of companies. For a brief period in 1980, MIM was Australia's largest company. It has pioneered several significant mining industry innovations, including the Isa Process copper refining technology, the Isasmelt smelting technology, and the IsaMill fine grinding technology, and it also commercialized the Jameson Cell column flotation technology.

Zinc smelting is the process of converting zinc concentrates into pure zinc. Zinc smelting has historically been more difficult than the smelting of other metals, e.g. iron, because in contrast, zinc has a low boiling point. At temperatures typically used for smelting metals, zinc is a gas that will escape from a furnace with the flue gas and be lost, unless specific measures are taken to prevent it.

Archaeometallurgical slag is slag discovered and studied in the context of archaeology. Slag, the byproduct of iron-working processes such as smelting or smithing, is left at the iron-working site rather than being moved away with the product. As it weathers well, it is readily available for study. The size, shape, chemical composition and microstructure of slag are determined by features of the iron-working processes used at the time of its formation.

<span class="mw-page-title-main">Cobalt extraction</span>

Cobalt extraction refers to the techniques used to extract cobalt from its ores and other compound ores. Several methods exist for the separation of cobalt from copper and nickel. They depend on the concentration of cobalt and the exact composition of the ore used.

<span class="mw-page-title-main">Lead smelting</span> Process of refining lead metal

Plants for the production of lead are generally referred to as lead smelters. Primary lead production begins with sintering. Concentrated lead ore is fed into a sintering machine with iron, silica, limestone fluxes, coke, soda ash, pyrite, zinc, caustics or pollution control particulates. Smelting uses suitable reducing substances that will combine with those oxidizing elements to free the metal. Reduction is the final, high-temperature step in smelting. It is here that the oxide becomes the elemental metal. A reducing environment pulls the final oxygen atoms from the raw metal.

<span class="mw-page-title-main">Non-ferrous extractive metallurgy</span> Metallurgy process

Non-ferrous extractive metallurgy is one of the two branches of extractive metallurgy which pertains to the processes of reducing valuable, non-iron metals from ores or raw material. Metals like zinc, copper, lead, aluminium as well as rare and noble metals are of particular interest in this field, while the more common metal, iron, is considered a major impurity. Like ferrous extraction, non-ferrous extraction primarily focuses on the economic optimization of extraction processes in separating qualitatively and quantitatively marketable metals from its impurities (gangue).

<span class="mw-page-title-main">Bottom-blown oxygen converter</span> Smelting furnace

The Bottom-blown Oxygen Converter or BBOC is a smelting furnace developed by the staff at Britannia Refined Metals Limited (“BRM”), a British subsidiary of MIM Holdings Limited. The furnace is currently marketed by Glencore Technology. It is a sealed, flat-bottomed furnace mounted on a tilting frame that is used in the recovery of precious metals. A key feature is the use of a shrouded lance to inject oxygen through the bottom of the furnace, directly into the precious metals contained in the furnace, to oxidize base metals or other impurities as part of their removal as slag.

<span class="mw-page-title-main">Manhès–David process</span>

The Manhès–David process is a refining process of the copper mattes, invented in 1880 by the French industrialist Pierre Manhès and his engineer Paul David. Inspired by the Bessemer process, it consists of the use of a converter to oxidise with air the undesirable chemical elements contained in the matte, to transform it into copper.

References

  1. Brent Hiskey "Metallurgy, Survey" in Kirk-Othmer Encyclopedia of Chemical Technology, 2000, Wiley-VCH, Weinheim. doi : 10.1002/0471238961.1921182208091911.a01.
  2. Adalbert Lossin "Copper" in Ullmann's Encyclopedia of Industrial Chemistry 2005, Wiley-VCH, Weinheim. doi : 10.1002/14356007.a07_471.
  3. "Pyrometallurgy". Encyclopedia Britannica. Retrieved January 16, 2021.