This article needs additional citations for verification .(October 2009) |
In X-ray astronomy, quasi-periodic oscillation (QPO) is the manner in which the X-ray light from an astronomical object flickers about certain frequencies. [1] In these situations, the X-rays are emitted near the inner edge of an accretion disk in which gas swirls onto a compact object such as a white dwarf, neutron star, or black hole. [2]
The QPO phenomenon promises to help astronomers understand the innermost regions of accretion disks and the masses, radii, and spin periods of white dwarfs, neutron stars, and black holes. QPOs could help test Albert Einstein's theory of general relativity which makes predictions that differ most from those of Newtonian gravity when the gravitational force is strongest or when rotation is fastest (when a phenomenon called the Lense–Thirring effect comes into play). However, the various explanations of QPOs remain controversial and the conclusions reached from their study remain provisional.
A QPO is identified by performing a power spectrum of the time series of the X-rays. A constant level of white noise is expected from the random variation of sampling the object's light. Systems that show QPOs sometimes also show nonperiodic noise that appears as a continuous curve in the power spectrum. A periodic pulsation appears in the power spectrum as a peak of power at exactly one frequency (a Dirac delta function given a long enough observation). A QPO, on the other hand, appears as a broader peak, sometimes with a Lorentzian shape.
What sort of variation with time could cause a QPO? For example, the power spectrum of an oscillating shot appears as a continuum of noise together with a QPO. An oscillating shot is a sinusoidal variation that starts suddenly and decays exponentially. A scenario in which oscillating shots cause the observed QPOs could involve "blobs" of gas in orbit around a rotating, weakly magnetized neutron star. Each time a blob comes near a magnetic pole, more gas accretes and the X-rays increase. At the same time, the blob's mass decreases so that the oscillation decays.
Often power spectra are formed from several time intervals and then added together before the QPO can be seen to be statistically significant.
QPOs were first identified in white dwarf systems and then in neutron star systems. [3] [4]
At first the neutron star systems found to have QPOs were of a class (Z sources and atoll sources) not known to have pulsations. The spin periods of these neutron stars were unknown as a result. These neutron stars are thought to have relatively low magnetic fields so the gas does not fall mostly onto their magnetic poles, as in accreting pulsars. Because their magnetic fields are so low, the accretion disk can get very close to the neutron star before being disrupted by the magnetic field.
The spectral variability of these neutron stars was seen to correspond to changes in the QPOs. Typical QPO frequencies were found to be between about 1 and 60 Hz. The fastest oscillations were found in a spectral state called the Horizontal Branch, and were thought to be a result of the combined rotation of the matter in the disk and the rotation of the collapsed star (the "beat frequency model"). During the Normal Branch and Flaring Branch, the star was thought to approach its Eddington luminosity at which the force of the radiation could repel the accreting gas. This could give rise to a completely different kind of oscillation.
Observations starting in 1996 with the Rossi X-ray Timing Explorer could detect faster variability, and it was found that neutron stars and black holes emit X-rays that have QPOs with frequencies up to 1000 Hz or so. Often "twin peak" QPOs were found in which two oscillations of roughly the same power appeared at high amplitudes. These higher frequency QPOs may show behavior related to that of the lower frequency QPOs. [5]
QPOs can be used to determine the mass of black holes. [6] The technique uses a relationship between black holes and the inner part of their surrounding disks, where gas spirals inward before reaching the event horizon. The hot gas piles up near the black hole and radiates a torrent of X-rays, with an intensity that varies in a pattern that repeats itself over a nearly regular interval. This signal is the QPO. Astronomers have long suspected that a QPO's frequency depends on the black hole's mass. The congestion zone lies close in for small black holes, so the QPO clock ticks quickly. As black holes increase in mass, the congestion zone is pushed farther out, so the QPO clock ticks slower and slower.
A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses (M☉), possibly more if the star was especially metal-rich. Except for black holes, neutron stars are the smallest and densest currently known class of stellar objects. Neutron stars have a radius on the order of 10 kilometers (6 mi) and a mass of about 1.4 M☉. They result from the supernova explosion of a massive star, combined with gravitational collapse, that compresses the core past white dwarf star density to that of atomic nuclei.
Cygnus X-1 (abbreviated Cyg X-1) is a galactic X-ray source in the constellation Cygnus and was the first such source widely accepted to be a black hole. It was discovered in 1971 during a rocket flight and is one of the strongest X-ray sources detectable from Earth, producing a peak X-ray flux density of 2.3×10−23 W/(m2⋅Hz) (2.3×103 jansky). It remains among the most studied astronomical objects in its class. The compact object is now estimated to have a mass about 21.2 times the mass of the Sun and has been shown to be too small to be any known kind of normal star or other likely object besides a black hole. If so, the radius of its event horizon has 300 km "as upper bound to the linear dimension of the source region" of occasional X-ray bursts lasting only for about 1 ms.
X-ray binaries are a class of binary stars that are luminous in X-rays. The X-rays are produced by matter falling from one component, called the donor, to the other component, called the accretor, which is either a neutron star or black hole. The infalling matter releases gravitational potential energy, up to 30 percent of its rest mass, as X-rays. The lifetime and the mass-transfer rate in an X-ray binary depends on the evolutionary status of the donor star, the mass ratio between the stellar components, and their orbital separation.
X-ray bursters are one class of X-ray binary stars exhibiting X-ray bursts, periodic and rapid increases in luminosity that peak in the X-ray region of the electromagnetic spectrum. These astrophysical systems are composed of an accreting neutron star and a main sequence companion 'donor' star. There are two types of X-ray bursts, designated I and II. Type I bursts are caused by thermonuclear runaway, while type II arise from the release of gravitational (potential) energy liberated through accretion. For type I (thermonuclear) bursts, the mass transferred from the donor star accumulates on the surface of the neutron star until it ignites and fuses in a burst, producing X-rays. The behaviour of X-ray bursters is similar to the behaviour of recurrent novae. In the latter case the compact object is a white dwarf that accretes hydrogen that finally undergoes explosive burning.
Soft X-ray transients (SXTs), also known as X-ray novae and black hole X-ray transients, are composed of a compact object and some type of "normal", low-mass star. These objects show dramatic changes in their X-ray emission, probably produced by variable transfer of mass from the normal star to the compact object, a process called accretion. In effect the compact object "gobbles up" the normal star, and the X-ray emission can provide the best view of how this process occurs. The "soft" name arises because in many cases there is strong soft X-ray emission from an accretion disk close to the compact object, although there are exceptions which are quite hard.
X-ray pulsars or accretion-powered pulsars are a class of astronomical objects that are X-ray sources displaying strict periodic variations in X-ray intensity. The X-ray periods range from as little as a fraction of a second to as much as several minutes.
A transient X-ray source first discovered in 1996 by the Italian-Dutch BeppoSAX satellite, SAX J1808.4−3658 revealed X-ray pulsations at the 401 Hz neutron star spin frequency when it was observed during a subsequent outburst in 1998 by NASA's RXTE satellite. The neutron star is orbited by a brown dwarf binary companion with a likely mass of 0.05 solar masses, every 2.01 hours. X-ray burst oscillations and quasi-periodic oscillations in addition to coherent X-ray pulsations have been seen from SAX J1808.4-3658, making it a Rosetta stone for interpretation of the timing behavior of low-mass X-ray binaries.
An ultraluminous X-ray source (ULX) is an astronomical source of X-rays that is less luminous than an active galactic nucleus but is more consistently luminous than any known stellar process (over 1039 erg/s, or 1032 watts), assuming that it radiates isotropically (the same in all directions). Typically there is about one ULX per galaxy in galaxies which host them, but some galaxies contain many. The Milky Way has not been shown to contain a ULX, although SS 433 may be a possible source. The main interest in ULXs stems from their luminosity exceeding the Eddington luminosity of neutron stars and even stellar black holes. It is not known what powers ULXs; models include beamed emission of stellar mass objects, accreting intermediate-mass black holes, and super-Eddington emission.
In astronomy, an intermediate polar is a type of cataclysmic variable, binary star system with a white dwarf and a cool main-sequence secondary star. In most cataclysmic variables, matter from the companion star is gravitationally stripped by the compact star and forms an accretion disk around it. In intermediate polar systems, the same general scenario applies except that the inner disk is disrupted by the magnetic field of the white dwarf.
GRO J1655−40 is a binary star consisting of an evolved F-type primary star and a massive, unseen companion, which orbit each other once every 2.6 days in the constellation of Scorpius. Gas from the surface of the visible star is accreted onto the dark companion, which appears to be a stellar black hole with several times the mass of the Sun. The optical companion of this low-mass X-ray binary is a subgiant F star.
Gamma-ray burst progenitors are the types of celestial objects that can emit gamma-ray bursts (GRBs). GRBs show an extraordinary degree of diversity. They can last anywhere from a fraction of a second to many minutes. Bursts could have a single profile or oscillate wildly up and down in intensity, and their spectra are highly variable unlike other objects in space. The near complete lack of observational constraint led to a profusion of theories, including evaporating black holes, magnetic flares on white dwarfs, accretion of matter onto neutron stars, antimatter accretion, supernovae, hypernovae, and rapid extraction of rotational energy from supermassive black holes, among others.
Asteroseismology studies the internal structure of the Sun and other stars using oscillations. These can be studied by interpreting the temporal frequency spectrum acquired through observations. In the same way, the more extreme neutron stars might be studied and hopefully give us a better understanding of neutron-star interiors, and help in determining the equation of state for matter at nuclear densities. Scientists also hope to prove, or discard, the existence of so-called quark stars, or strange stars, through these studies. Fundamental information can be obtained of the General Relativity Theory by observing the gravitational radiation from oscillating neutron stars.
Hercules X-1, also known as 4U1656+35, is a moderately strong X-ray binary source first studied by the Uhuru satellite. It is composed of a neutron star accreting matter from a normal star probably due to Roche lobe overflow.
In astronomy, CENBOL is a model developed by the astrophysicist Sandip Chakrabarti and collaborators to explain the region of an accretion flow around a black hole.
GX 339-4 is a moderately strong variable galactic low-mass X-ray binary (LMXB) source and black hole candidate that flares from time to time. From spectroscopic measurements, the mass of the black-hole was found to be at least of 5.8 solar masses.
Michiel Baldur Maximiliaan van der Klis is a Dutch astronomer best known for his work on extreme 'pairings' of stars called X-ray binaries, more particularly his explanation of the occurrence of quasi-periodic oscillations (QPOs) in these systems and his co-discovery of the first millisecond X-ray pulsar. In the 1980s he gained worldwide fame with his investigation of QPOs. His revolutionary discoveries have had an enormous impact in his field of research; in effect, they have made it what it is today. Van der Klis pioneered special mathematical analysis techniques that are now regarded as the “gold standard” within his discipline.
Astrophysical X-ray sources are astronomical objects with physical properties which result in the emission of X-rays.
An accretion disk is a structure formed by diffuse material in orbital motion around a massive central body. The central body is most frequently a star. Friction, uneven irradiance, magnetohydrodynamic effects, and other forces induce instabilities causing orbiting material in the disk to spiral inward toward the central body. Gravitational and frictional forces compress and raise the temperature of the material, causing the emission of electromagnetic radiation. The frequency range of that radiation depends on the central object's mass. Accretion disks of young stars and protostars radiate in the infrared; those around neutron stars and black holes in the X-ray part of the spectrum. The study of oscillation modes in accretion disks is referred to as diskoseismology.
Luciano Rezzolla is an Italian professor of relativistic astrophysics and numerical relativity at the Goethe University Frankfurt. His main field of study is the physics and astrophysics of compact objects such as black holes and neutron stars. It was announced in 2019 that he had been appointed honorary Andrews Professor of Astronomy at Trinity College Dublin (TCD).
Rudy Wijnands is a Dutch astrophysicist. He is professor of Observational High-Energy Astrophysics at the University of Amsterdam.