Rapid Dragon (missile system)

Last updated
Rapid Dragon missile deployment system
Rapid Dragon Test2021 12 211217-F-TH808-1003.jpg
A Rapid Dragon module being loaded on a C-130 for airdrop.
Type Palletized airdrop standoff missile
launch system
Place of originUnited States
Service history
In service2021 (JASSM-ER successful test)
Used by United States Air Force
Production history
DesignerUS Air Force Research Lab SDPE group
Air Force Futures
Designed2020
Manufacturer Lockheed Martin Missiles and Fire Control
Systima Technologies
Safran Electronics & Defense [1]
Produced2022 (low production)
Variants C-130: 6 tube module (max 2)
C-17: 9 tube module (max 5) [2]
Specifications
Length17 ft (520 cm) (approx.)
Width8.4 ft (260 cm) for 6 and 9 tube configurations
Crew4 (Airdrop cargo crew)

Barrels4 to 9+ (configurable to cargo deck size)
Effective firing range JASSM-ER: > 575 mi (925 km)
JASSM-XR: > 1,200 mi (1,900 km)
LRASM (naval targets): > 500 mi (800 km)+
JDAM-ER: > 50 mi (80 km)
Feed systemVertical drop

Main
armament
AGM-158 variants (anti surface & anti naval)
Payload capacity8,800 to 21,800 lb (4,000 to 9,900 kg)
Launch
platform
Pallet-airdrop capable aircraft:
   C-130, C-17 (confirmed compatibility)

Rapid Dragon is a palletized and disposable weapons module which is airdropped in order to deploy flying munitions, typically cruise missiles, from unmodified cargo planes. Developed by the United States Air Force and Lockheed, the airdrop-rigged pallets, called "deployment boxes," provide a low cost method allowing unmodified cargo planes, such as C-130 or C-17 aircraft, to be temporarily repurposed as standoff bombers capable of mass launching any variant of long or short range AGM-158 JASSM cruise missiles against land or naval targets. [1]

Contents

The size of the deployment boxes is configurable and ranges from 4 to 45 AGM-158B JASSM-ER (extended range) cruise missiles, [3] which can strike targets at a range of 570 to 1,200 mi (925 to 1,900 km). Large numbers of JASSM-XR (extreme range) will become available in 2024.

The system has been successfully used with C-130 and C-17 cargo planes to strike both land and sea targets with armed and test version JASSM-ERs.

Future development will generalize the system beyond the AGM-158 missile family to include JDAM bombs, sea mines, drones, and other missile systems as well as integrating the launch system into use on other supporting cargo and non-cargo aircraft. [2]

The current version uses unmodified cargo aircraft while missile deployment requires no additional crew skills beyond those for airdrops of supplies or vehicles. The system can be thought of as a smart and disposable bomb bay in a box that includes an interface allowing targeting information that is gathered from allied units in the area to be fed to the munitions from a distant fire control center.

Overview

The project name is derived from a tenth century Chinese volley-firing siege weapon, known as the Ji Long Che (疾龙车 "rapid dragon cart"), which could simultaneously launch large numbers of long range crossbow missiles from a safe distance. [1] Similarly, the present-day Rapid Dragon launch system is intended to saturate a target's defenses from standoff weapon distances, where the launching aircraft is not threatened. It can be rapidly fielded, using existing fleets of airlift assets to offer the option of significant surges in mass attack missions at minimal cost and training. Strategically, it also allows the United States to rapidly provide strategic strike capability to any of its foreign military partners that already possess the commonplace capacity to air drop supplies from cargo planes. [2] It also increases the amount of places that cruise missile-carrying aircraft can deploy from and complicates an adversary's attempts to cripple the operator's strike aircraft fleet by destroying their established airbases. While a B-52 Stratofortress requires a 10,000 ft (3,000 m) concrete runway to take off and land, a C-130 can operate from 3,000 ft (910 m) stretches of less developed surfaces. [4] In addition to enhancing USAF capabilities, the Rapid Dragon concept enables other air forces without strategic bombers but which do operate transport aircraft to mass fire JASSMs. [5]

Rapid Dragon mission stages Rapid Dragon Airdrop diagram 220112-F-XY986-1002.jpg
Rapid Dragon mission stages

Developed from 2020 to 2021 by a team of US Air Force development groups and industry partners, Rapid Dragon has all of its capabilities self-contained on its disposable drop pallet; allowing a standard military cargo plane to be used at any time as a standoff strategic bomber before reverting back to regular transport missions. For example, a C-130 could launch 12 JASSM cruise missiles from a safe distance of 620 to 1,180 mi (1,000 to 1,900 km) from target with the use of two Rapid Dragon pallets. The larger C-17 could accommodate 5 Rapid Dragon pallets, each carrying 9 missiles for a mission, with a total payload of 45 missiles with 1,100 lb (500 kg) warheads. In a test over the Gulf of Mexico on December 16, 2021, an armed Rapid Dragon received target data from a distant command and control node in flight, used the data to target its armed JASSM, was airdropped from the aircraft, and successfully deployed its payloads with the live missile destroying its naval target. The other 3 bays of the 4-pack palette had ballast rounds with the same shape and weight in order to test the system's method of preventing missile releases from conflicting with each other. To maintain consistent stability during drops, these non-munition ballast rounds will continue to be used for missions requiring fewer missiles than the module's full capacity. The cargo plane, an MC-130J, was flown by an Air Force Special Operations Command operational flight crew and carried a 4-pack version of the Rapid Dragon missile module. The airdrop crew treated the load as a standard supply drop with the pallet's Rapid Dragon's control unit autonomously receiving command and control data to be used for programming the JASSM's targeting data. [1]

Mass launch of a swarm of miniature decoys to accompany a Rapid Dragon airdrop. (Air Force Research Laboratory concept illustration) AFRL concept- Airdropped Mass Launcher of Minature decoy swarm 2019-04.jpg
Mass launch of a swarm of miniature decoys to accompany a Rapid Dragon airdrop. (Air Force Research Laboratory concept illustration)

Based on prior conflicts, it is known that even modern air defense systems struggle with defending against cruise missile barrages as seen with the 2018 Riyadh missile strike during the Saudi Arabian–led intervention in Yemen as well as the 2018 missile strikes against Syria during the American-led intervention in the Syrian civil war. Due to the vulnerability of sophisticated air defense systems such as S-300 and S-400 to mass attacks from low flying cruise missiles, it is thought that Rapid Dragon is well suited for swarm tactics missions to suppress enemy air defenses with large numbers of JASSM-ER optionally accompanied by swarms of miniature spoofing decoy drones released from a second airdrop module. [6] [7]

The US Air Force intends to continue live tests with C-17s, AGM-158C Long Range Anti Ship (LRASM), and 1,200 mi (1,900 km) range AGM-158D JASSM-XR which became available in low production numbers in 2021. [8] The Air Force's Strategic Development Planning and Experimentation (SDPE) group is also researching integration of Boeing's lower cost but shorter range (50 mi or 80 km) JDAM-ER bombs, and is working with Raytheon to support Rapid Dragon launch of ADM-160 MALD decoys. [9] In November 2022, the first European-theater, live-fire demonstration of a Joint Air-to-Surface Standoff Missile was performed with a MC-130J at Andøya Space test range in Norway with support from Polish, Norwegian, Romanian, and British military partners for the Atreus 2022 military exercise. [10]

Some of the cruise missiles compatible with Rapid Dragon can carry nuclear warheads. This could change how the terms of arms limitation treaties will need to be written or re-written. Stipulations based on the number of launch vehicles would no longer be effective if any cargo aircraft with a suitable bay could be converted into one. [11]

Historical context

Related Research Articles

<span class="mw-page-title-main">Rockwell B-1 Lancer</span> American strategic bomber by Rockwell, later Boeing

The Rockwell B-1 Lancer is a supersonic variable-sweep wing, heavy bomber used by the United States Air Force. It has been nicknamed the "Bone". It is one of three strategic bombers serving in the U.S. Air Force fleet along with the B-2 Spirit and the B-52 Stratofortress as of 2024, and can carry the heaviest payload of any U.S. Air Force bomber.

<span class="mw-page-title-main">Cruise missile</span> Guided missile with precision targeting capabilities and multiple launch platforms

A cruise missile is a guided missile used against terrestrial or naval targets, that remains in the atmosphere and flies the major portion of its flight path at an approximately constant speed. Cruise missiles are designed to deliver a large warhead over long distances with high precision. Modern cruise missiles are capable of traveling at high subsonic, supersonic, or hypersonic speeds, are self-navigating, and are able to fly on a non-ballistic, extremely low-altitude trajectory.

<span class="mw-page-title-main">Military aircraft</span> Aircraft designed or utilized for use in or support of military operations

A military aircraft is any fixed-wing or rotary-wing aircraft that is operated by a legal or insurrectionary military of any type. Military aircraft can be either combat or non-combat:

<span class="mw-page-title-main">Glide bomb</span> Aerial weapon with flight control surfaces

A glide bomb or stand-off bomb is a standoff weapon with flight control surfaces to give it a flatter, gliding flight path than that of a conventional bomb without such surfaces. This allows it to be released at a distance from the target rather than right over it, allowing a successful attack without exposing the launching aircraft to air defenses near the target. Glide bombs can accurately deliver warheads in a manner comparable to cruise missiles at a fraction of the cost—sometimes by installing flight control kits on simple unguided bombs—and they are very difficult for surface-to-air missiles to intercept due to their tiny radar signatures and short flight times. The only effective countermeasure is to intercept launching aircraft before they approach within range, making glide bombs very potent weapons where wartime exigencies prevent this.

<span class="mw-page-title-main">AGM-154 Joint Standoff Weapon</span> Type of glide bomb

The AGM-154 Joint Standoff Weapon (JSOW) is a glide bomb that resulted from a joint venture between the United States Navy and Air Force to deploy a standardized medium range precision guided weapon, especially for engagement of defended targets from outside the range of standard anti-aircraft defenses, thereby increasing aircraft survivability and minimizing friendly losses. It is intended to be used against soft targets such as parked aircraft, trucks, armored personnel carriers (APCs), and surface-to-air missile sites (SAMs). Prior to launch, it is given a destination through either a predesignated waypoint or a point marked through a targeting pod. It glides, using two wings that pop out for added lift, to the marked destination and dispenses submunitions in a short, roughly linear pattern. The designation of the Joint Standoff Weapon as an "air-to-ground missile" is a misnomer, as it is an unpowered bomb with guidance avionics, similar to the older GBU-15.

Hunter-Killer is an unofficial project name based upon an Aviation Week & Space Technology article. The U.S. Air Force's Hunter-Killer program was a tactical unmanned combat air vehicles (UCAV) procurement program. The General Atomics MQ-9 Reaper, a variant of the MQ-1 Predator won the project and was deployed in Afghanistan.

<span class="mw-page-title-main">AGM-28 Hound Dog</span> Cruise missile

The North American Aviation AGM-28 Hound Dog was a supersonic, turbojet-propelled, nuclear armed, air-launched cruise missile developed in 1959 for the United States Air Force. It was primarily designed to be capable of attacking Soviet ground-based air defense sites prior to a potential air attack by B-52 Stratofortress long range bombers during the Cold War. The Hound Dog was first given the designation B-77, then redesignated GAM-77, and finally AGM-28. It was conceived as a temporary standoff missile for the B-52, to be used until the GAM-87 Skybolt air-launched ballistic missile was available. Instead, the Skybolt was cancelled within a few years and the Hound Dog continued to be deployed for a total of 15 years until its replacement by newer missiles, including the AGM-69 SRAM and then the AGM-86 ALCM.

<span class="mw-page-title-main">AGM-86 ALCM</span> Air-to-ground strategic cruise missile

The AGM-86 ALCM is an American subsonic air-launched cruise missile (ALCM) built by Boeing and operated by the United States Air Force. This missile was developed to increase the effectiveness and survivability of the Boeing B-52H Stratofortress strategic bomber. The missile dilutes an enemy's forces and complicates air defense of its territory.

<span class="mw-page-title-main">Air-to-surface missile</span> Missile designed to be launched from aircraft

An air-to-surface missile (ASM) or air-to-ground missile (AGM) is a missile designed to be launched from military aircraft at targets on land or sea. There are also unpowered guided glide bombs not considered missiles. The two most common propulsion systems for air-to-surface missiles are rocket motors, usually with shorter range, and slower, longer-range jet engines. Some Soviet-designed air-to-surface missiles are powered by ramjets, giving them both long range and high speed.

<span class="mw-page-title-main">AGM-129 ACM</span> Air-launched cruise missile

The AGM-129 ACM was a low-observable, subsonic, turbofan-powered, air-launched cruise missile originally designed and built by General Dynamics and eventually acquired by Raytheon Missile Systems. Prior to its withdrawal from service in 2012, the AGM-129A was carried exclusively by the US Air Force's B-52H Stratofortress bombers.

<span class="mw-page-title-main">Airdrop</span> Type of airlift

An airdrop is a type of airlift in which items including weapons, equipment, humanitarian aid or leaflets are delivered by military or civilian aircraft without their landing. Developed during World War II to resupply otherwise inaccessible troops, themselves often airborne forces, airdrops can also refer to the airborne assault itself.

<span class="mw-page-title-main">Nuclear weapons delivery</span> Type of explosive arms

Nuclear weapons delivery is the technology and systems used to place a nuclear weapon at the position of detonation, on or near its target. Several methods have been developed to carry out this task.

<span class="mw-page-title-main">Popeye (missile)</span> Air-to-surface missile

The Popeye is a family of air-to-surface missiles developed and in use by Israel, of which several types have been developed for Israeli and export users. A long-range submarine-launched cruise missile variant of the Popeye Turbo has been speculated as being employed in Israel's submarine-based nuclear forces. The United States operated the Popeye under a different designation according to US naming conventions as the AGM-142 Have Nap.

<span class="mw-page-title-main">AGM-158 JASSM</span> American low observable air-launched cruise missile

The AGM-158 JASSM is a low detection standoff air-launched cruise missile developed by Lockheed Martin for the United States Armed Forces. It is a large, stealthy long-range weapon with a 1,000-pound (450 kg) armor piercing warhead. It completed testing and entered service with the U.S. Air Force in 2009, and has entered foreign service in Australia, Finland, and Poland as of 2014. An extended range version of the missile, the AGM-158B JASSM-ER, entered service in 2014 as well as an anti-ship derivative, the AGM-158C LRASM, in 2018. By September 2016, Lockheed Martin had delivered 2,000 total JASSMs comprising both variants to the USAF.

Standoff weapons are missiles or bombs which may be launched from a distance sufficient to allow attacking personnel to evade the effect of the weapon or defensive fire from the target area. Typically, they are used against land- and sea-based targets in an offensive operation. The name is derived from their ability to engage the target while standing off outside the range at which the defenders are likely to engage the attacker. Typical stand-off weapons include cruise missiles, glide bombs and short-range ballistic missiles.

<span class="mw-page-title-main">Boeing B-52 Stratofortress</span> US Air Force strategic bomber (1955–present)

The Boeing B-52 Stratofortress is an American long-range, subsonic, jet-powered strategic bomber. The B-52 was designed and built by Boeing, which has continued to provide support and upgrades. It has been operated by the United States Air Force (USAF) since the 1950s, and NASA for over 20 years. The bomber can carry up to 70,000 pounds (32,000 kg) of weapons, and has a typical combat range of around 8,800 miles (14,200 km) without aerial refueling.

<span class="mw-page-title-main">Wan Chien</span> Taiwanese air-launched cruise missile

The Wan Chien is an air to ground cruise missile developed and produced by the National Chung-Shan Institute of Science and Technology (NCSIST) of Taiwan.

<span class="mw-page-title-main">AGM-158C LRASM</span> Stealthy anti-ship cruise missile

The AGM-158C LRASM is a stealth air launch anti-ship cruise missile developed for the United States Air Force and United States Navy by the Defense Advanced Research Projects Agency (DARPA). Derived from the AGM-158B JASSM-ER, the LRASM was intended to pioneer more sophisticated autonomous targeting capabilities than the U.S. Navy's current Harpoon anti-ship missile, which has been in service since 1977.

<span class="mw-page-title-main">Ra'ad</span> Pakistani air-launched cruise missile

The Ra'ad, is a subsonic, standoff, and an air-launched cruise missile (ALCM) designed and jointly developed by the National Engineering & Scientific Commission (NESCOM) and Pakistan Air Force's Air Weapons Complex.

The AGM-181 Long Range Stand Off Weapon (LRSO) is a nuclear-armed air-launched cruise missile under development by Raytheon Technologies that will replace the AGM-86 ALCM.

References

  1. 1 2 3 4 5 "Rapid Dragon's first live fire test of a Palletized Weapon System deployed from a cargo ai". Air Force Materiel Command. 16 December 2021. Archived from the original on 8 December 2022. Retrieved 23 July 2022.
  2. 1 2 3 4 "Rapid Dragon – Air Force Research Laboratory". afresearchlab.com. Archived from the original on 24 September 2021. Retrieved 23 July 2022.
  3. Mizokami, Kyle (22 December 2021). "The Air Force Turned a Cargo Plane into a Bomber". Popular Mechanics. Archived from the original on 22 December 2021. Retrieved 23 July 2022.
  4. Cohen, Rachel S. (22 September 2022). "Air Force plans more tests of amphibious, armed MC-130J airlifter". Air Force Times. Archived from the original on 6 January 2024.
  5. Johnson, Reuben F. (17 June 2023). "Rapid Dragon: A Game-changer in Stand-Off Weapons Delivery". Aviation International News. Archived from the original on 18 June 2023.
  6. 1 2 Hollings, Alex (29 June 2022). "Rapid Dragon: The U.S. Military's Plan To Turn Cargo Planes Into Arsenal Ships". 19FortyFive. Archived from the original on 1 July 2022.
  7. "The S-400 myth: Why Russia's air defense prowess is exaggerated". Sandboxx. 21 July 2022. Archived from the original on 22 September 2023. Retrieved 30 July 2022.
  8. 1 2 Hollings, Alex (28 June 2022). "Rapid Dragon: The US Military's Plan to Turn Cargo Planes into Arsenal Ships". Sandboxx. Archived from the original on 11 April 2023. Retrieved 23 July 2022.
  9. 1 2 Host, Pat (1 October 2021). "US AFRL plans Rapid Dragon palletised munitions experiments with additional weapons". Janes. Archived from the original on 1 October 2021. Retrieved 23 July 2022.
  10. Workman, Staff Sgt. Izabella (9 November 2022). "ATREUS 2022-4 - JASSM Live Fire". Defense Visual Information Distribution Service. Archived from the original on 9 November 2022. Retrieved 9 November 2022.
  11. Moore, George M. (4 August 2023). "Rapid Dragon: the US military game-changer that could affect conventional and nuclear strategy and arms control negotiations". Bulletin of the Atomic Scientists. Archived from the original on 4 August 2023.
  12. Hambling, David (3 June 2020). "Why U.S. Air Force's CLEAVER Could Be A Step Change In Air Weapons". Forbes. Archived from the original on 24 July 2022. Retrieved 23 July 2022.
  13. Jenkins, Dennis R. (1999). B-1 Lancer, The Most Complicated Warplane Ever Developed. New York: McGraw-Hill. ISBN   978-0071346948.
  14. Ari, Gurler (1 March 2003). "Cargo Aircraft Bombing System (CABS)". Air Force Institute of Technology. Retrieved 11 November 2022.
  15. Roza, Jordan (1 September 2015). "Improving Standoff Bombing Capacity in the Face of Anti-Access Area Denial Threats". RAND Corporation. Retrieved 11 November 2022.
  16. Arime, Takashi; Sugimine, Masanori; Matsuda, Seiji; Yokote, Jun (August 8, 2011). "ALSET - Air Launch System Enabling Technology R&D Program". American Institute of Aeronautics and Astronautics/Utah State University - Small Satellite Conference. Retrieved 2023-09-18.
  17. Larson, Caleb (8 November 2021). "X-61 Gremlin: How The U.S. Military Could Soon Have Flying Drone Motherships". 19FortyFive. Archived from the original on 8 November 2021. Retrieved 11 November 2022.