Robert Penner

Last updated
Robert Clark Penner
Robert Penner.jpg
Born
Los Angeles, California, United States
Alma mater Cornell University
Massachusetts Institute of Technology
Scientific career
Fields Mathematics
Physics
Biology
Institutions Institut des Hautes Etudes Scientifiques
Doctoral advisor James Munkres
David Gabai

Robert Clark Penner is an American mathematician whose work in geometry and combinatorics has found applications in high-energy physics and more recently in theoretical biology. He is the son of Sol Penner, an aerospace engineer.

Contents

Biography

Robert Clark Penner received his B.S. degree from Cornell University in 1977 and his Ph.D. from the Massachusetts Institute of Technology in 1981, the latter under the direction of James Munkres and David Gabai. In his doctoral studies, he solved a 50 year old problem posed by Max Dehn on the action of the mapping class group on curves and arcs in surfaces, developed combinatorial aspects of Thurston's theory of train tracks and generalized Thurston's construction of pseudo-Anosov maps. [1]

After postdoctoral positions at Princeton University and at the Mittag-Leffler Institute, Penner spent most of the period of 1985–2003 at the University of Southern California. From 2004 until 2012, he worked at Aarhus University, where he co-founded with Jørgen Ellegaard Andersen the Center for the Quantum Geometry of Moduli Spaces. [2] Since 2013 Penner has held the position of the Rene Thom Chair in Mathematical Biology at the Institut des Hautes Etudes Scientifiques. [3]

Throughout his career Penner held various visiting positions around the world including Harvard University, Stanford University, Max-Planck-Institut für Mathematik at Bonn, University of Tokyo, Mittag-Leffler Institute, Caltech, UCLA, Fields Institute, University of Chicago, ETH Zurich, University of Bern, University of Helsinki, University of Strasbourg, University of Grenoble, Nonlinear Institute of Nice-Sophia Antipolis.

Contributions to mathematics, physics, and biology

Penner's research began in the theory of train tracks including a generalization of Thurston's original construction of pseudo-Anosov maps to the so-called Penner-Thurston construction, which he used to give estimates on least dilatations. He then co-discovered the so-called Epstein-Penner decomposition of non-compact complete hyperbolic manifolds with David Epstein, in dimension 3 a central tool in knot theory. Over several years he developed the decorated Teichmüller theory of punctured surfaces including the so-called Penner matrix model, the basic partition function for Riemann's moduli space. Extending the foregoing to orientation-preserving homeomorphisms of the circle, Penner developed his model of universal Teichmüller theory together with its Lie algebra. He discovered combinatorial cocycles with Shigeyuki Morita for the first and with Nariya Kawazumi for the higher Johnson homomorphisms. Penner has also contributed to theoretical biology in joint work with Jørgen E. Andersen et al. discovering a priori geometric constraints on protein geometry, and with Michael S. Waterman, Piotr Sulkowski, Christian Reidys et al. introducing and solving the matrix model for RNA topology.

Main journal publications

Books

Patents

Methods of Digital Filtering and Multi-Dimensional Data Compression Using the Farey Quadrature and Arithmetic, Fan, and Modular Wavelets, US Patent 7,158,569 (granted 2Jan07) [4]

Philanthropy

In 2018 Penner endowed the Alexzandria Figueroa and Robert Penner Chair at the IHES in memoriam of Alexzandria Figueroa. [5]

Related Research Articles

In mathematics, in particular algebraic geometry, a moduli space is a geometric space whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spaces frequently arise as solutions to classification problems: If one can show that a collection of interesting objects can be given the structure of a geometric space, then one can parametrize such objects by introducing coordinates on the resulting space. In this context, the term "modulus" is used synonymously with "parameter"; moduli spaces were first understood as spaces of parameters rather than as spaces of objects. A variant of moduli spaces is formal moduli. Bernhard Riemann first used the term "moduli" in 1857.

<span class="mw-page-title-main">Low-dimensional topology</span> Branch of topology

In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot theory, and braid groups. This can be regarded as a part of geometric topology. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of continuum theory.

In mathematics, in the subfield of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a certain discrete group corresponding to symmetries of the space.

<span class="mw-page-title-main">Simon Donaldson</span> English mathematician

Sir Simon Kirwan Donaldson is an English mathematician known for his work on the topology of smooth (differentiable) four-dimensional manifolds, Donaldson–Thomas theory, and his contributions to Kähler geometry. He is currently a permanent member of the Simons Center for Geometry and Physics at Stony Brook University in New York, and a Professor in Pure Mathematics at Imperial College London.

In mathematics, Thurston's classification theorem characterizes homeomorphisms of a compact orientable surface. William Thurston's theorem completes the work initiated by Jakob Nielsen (1944).

In mathematics, the Teichmüller space of a (real) topological surface is a space that parametrizes complex structures on up to the action of homeomorphisms that are isotopic to the identity homeomorphism. Teichmüller spaces are named after Oswald Teichmüller.

In mathematics, and especially differential topology and gauge theory, Donaldson's theorem states that a definite intersection form of a compact, oriented, smooth manifold of dimension 4 is diagonalisable. If the intersection form is positive (negative) definite, it can be diagonalized to the identity matrix over the integers. The original version of the theorem required the manifold to be simply connected, but it was later improved to apply to 4-manifolds with any fundamental group.

In mathematics, specifically in topology, a pseudo-Anosov map is a type of a diffeomorphism or homeomorphism of a surface. It is a generalization of a linear Anosov diffeomorphism of the torus. Its definition relies on the notion of a measured foliation introduced by William Thurston, who also coined the term "pseudo-Anosov diffeomorphism" when he proved his classification of diffeomorphisms of a surface.

<span class="mw-page-title-main">Clifford Taubes</span> American mathematician

Clifford Henry Taubes is the William Petschek Professor of Mathematics at Harvard University and works in gauge field theory, differential geometry, and low-dimensional topology. His brother is the journalist Gary Taubes.

In mathematics, and more precisely in topology, the mapping class group of a surface, sometimes called the modular group or Teichmüller modular group, is the group of homeomorphisms of the surface viewed up to continuous deformation. It is of fundamental importance for the study of 3-manifolds via their embedded surfaces and is also studied in algebraic geometry in relation to moduli problems for curves.

In mathematical complex analysis, universal Teichmüller spaceT(1) is a Teichmüller space containing the Teichmüller space T(G) of every Fuchsian group G. It was introduced by Bers (1965) as the set of boundary values of quasiconformal maps of the upper half-plane that fix 0, 1, and ∞.

<span class="mw-page-title-main">Richard Thomas (mathematician)</span>

Richard Paul Winsley Thomas is a British mathematician working in several areas of geometry. He is a professor at Imperial College London. He studies moduli problems in algebraic geometry, and ‘mirror symmetry’—a phenomenon in pure mathematics predicted by string theory in theoretical physics.

In differential geometry, algebraic geometry, and gauge theory, the Kobayashi–Hitchin correspondence relates stable vector bundles over a complex manifold to Einstein–Hermitian vector bundles. The correspondence is named after Shoshichi Kobayashi and Nigel Hitchin, who independently conjectured in the 1980s that the moduli spaces of stable vector bundles and Einstein–Hermitian vector bundles over a complex manifold were essentially the same.

Clifford John Earle, Jr. was an American mathematician who specialized in complex variables and Teichmüller spaces.

<span class="mw-page-title-main">Kenji Ueno</span> Japanese mathematician

Kenji Ueno is a Japanese mathematician, specializing in algebraic geometry.

Leon Armenovich Takhtajan is a Russian mathematical physicist of Armenian descent, currently a professor of mathematics at the Stony Brook University, Stony Brook, NY, and a leading researcher at the Euler International Mathematical Institute, Saint Petersburg, Russia.

Paul Stephen Aspinwall is a British theoretical physicist and mathematician, who works on string theory and also algebraic geometry.

<span class="mw-page-title-main">Ralph Kaufmann</span> German mathematician

Ralph Martin Kaufmann is a German mathematician working in the United States.

David Arends Gieseker is an American mathematician, specializing in algebraic geometry.

<span class="mw-page-title-main">Michael Kapovich</span> Russian-American mathematician

Michael Kapovich is a Russian-American mathematician.

References