This article needs additional citations for verification .(October 2013) |
The loads on both horizontal-axis wind turbines (HAWTs) and vertical-axis wind turbines (VAWTs) are cyclic; the thrust and torque acting on the blades depend on where the blade is. In a horizontal axis wind turbine, both the apparent wind speed seen by the blade and the angle of attack depends on the blade's position. This phenomenon is described as rotational sampling. This article will provide insight into the cyclic nature of the loads that arise because of rotational sampling for a horizontal axis wind turbine.
Rotational sampling can be divided into two parts: deterministic and stochastic. Deterministic processes present themselves as spikes on a power spectrum, where as stochastic processes spread over a wider frequency range.
Analysis of the loads on a wind turbine can be carried out through the use of power spectra. A power spectrum is defined as the power spectral density function of a signal plotted against frequency. The power spectral density function of a plot is defined as the Fourier transform of the covariance function. [1] [2] Regarding the analysis of loads, it involves time series, in which case the covariance function becomes the autocovariance function. In the signal processing sense, the autocovariance can be related to the autocorrelation function.
Upon completing a single revolution, a blade has produced an ever-changing torque, and so power. Some of these changes are due to deterministic processes, i.e., processes that can be determined and do not require statistical methods. Examples of deterministic processes are listed below:
As a blade sweeps through each cycle, gravity is acting on the blade. Depending on the part of the cycle, gravity might be acting to accelerate the blade, or decelerate it. The additional torque that arises on a blade due to gravity is given by
where r is the length of the blade, m is the mass of the blade, g is the gravitational field strength, t is the time, and is the angular velocity of the blade.
In fluid dynamics, the flow of a fluid is dependent upon boundary conditions. Boundary conditions are influenced by the presence of solid bodies. In a wind turbine, the presence of the tower results in a reduction of the wind speed directly in front of it; that is, the blades experience a reduced wind speed when they pass in front of the tower.
In fluid dynamics, there exists the no slip boundary condition. This states that the velocity of a fluid at the surface of a solid body, such as the Earth, is zero. A consequence of that is that the wind speed varies with height above ground. This effect is known as wind shear. As a result, a blade at the highest part of its cycle will experience a greater wind speed than that of one at the lowest part of its cycle.
The drivetrain of a wind turbine comprises the hub, the low speed shaft, the gearbox, the high speed shaft, and the generator. The torque at the hub is strongly influenced by the rotor dynamics. The instantaneous hub torque is found by summing all the torques from all the blades of the wind turbine at any instant in time.
Consider an bladed wind turbine. Each blade is separated angularly from a neighboring blade by degrees. That is, for a 3-bladed wind turbine, the blades are 120 degrees apart.
The torque acting on the blade is defined as the z-component of , where r is the radius from the axis of rotation (in this case the hub), and F is the force acting on the blade. If the torque is defined as the z-component of this cross product, then the torque is simply rFperp where Fperp is the force perpendicular to the radius vector, or tangential to the instantaneous velocity of the blade (See figure below)
From the figure above, it can be seen that the torque, T, due to gravitational forces acting on a single blade is given by the following expression:
| (1) |
where m is the mass of the blade, g is the gravitational field strength, k is a multiplicative integer, is the angular velocity of the blade, and t is the time.
For an n-bladed rotor, the instantaneous torque at the hub from all n blades by gravity is determined by summing the effects of all the blades at any one instant. Remembering that the blades are offset from each other by 360/n, the instantaneous torque at the hub from gravity is given by the following expression:
Simple trigonometry reveals that only non-zero terms arise when k is a multiple of n. Thus, the overall effect of gravity on the torque at the hub is
The covariance function of a sum of sinusoids is itself a sum of sinusoidal functions. Thus, the power spectral density function is a set of Dirac delta functions. The locations of these are at multiples of n. Thus, on a power spectrum, deterministic processes such as gravitational loading manifest themselves as spikes. This can be seen from analysing generator torque.
For analysis of torque on a single blade, the spikes occur at where k' is 1,2,3,.. [5] This can be seen from taking the autocovariance of equation 1, and then taking the Fourier transform of this result.
Spectral analysis of component loading is useful in fatigue analysis.
In mechanics and physics, simple harmonic motion is a special type of periodic motion an object experiences due to a restoring force whose magnitude is directly proportional to the distance of the object from an equilibrium position and acts towards the equilibrium position. It results in an oscillation that is described by a sinusoid which continues indefinitely.
In physics, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force strength and the distance traveled. A force is said to do positive work if when applied it has a component in the direction of the displacement of the point of application. A force does negative work if it has a component opposite to the direction of the displacement at the point of application of the force.
In mathematics and statistics, a stationary process is a stochastic process whose unconditional joint probability distribution does not change when shifted in time. Consequently, parameters such as mean and variance also do not change over time. If you draw a line through the middle of a stationary process then it should be flat; it may have 'seasonal' cycles, but overall it does not trend up nor down.
In statistics, econometrics, and signal processing, an autoregressive (AR) model is a representation of a type of random process; as such, it is used to describe certain time-varying processes in nature, economics, behavior, etc. The autoregressive model specifies that the output variable depends linearly on its own previous values and on a stochastic term ; thus the model is in the form of a stochastic difference equation. Together with the moving-average (MA) model, it is a special case and key component of the more general autoregressive–moving-average (ARMA) and autoregressive integrated moving average (ARIMA) models of time series, which have a more complicated stochastic structure; it is also a special case of the vector autoregressive model (VAR), which consists of a system of more than one interlocking stochastic difference equation in more than one evolving random variable.
In an electric circuit, instantaneous power is the time rate of flow of energy past a given point of the circuit. In alternating current circuits, energy storage elements such as inductors and capacitors may result in periodic reversals of the direction of energy flow. Its SI unit is the watt.
Rotation around a fixed axis is a special case of rotational motion. The fixed-axis hypothesis excludes the possibility of an axis changing its orientation and cannot describe such phenomena as wobbling or precession. According to Euler's rotation theorem, simultaneous rotation along a number of stationary axes at the same time is impossible; if two rotations are forced at the same time, a new axis of rotation will appear.
Instantaneous phase and frequency are important concepts in signal processing that occur in the context of the representation and analysis of time-varying functions. The instantaneous phase (also known as local phase or simply phase) of a complex-valued function s(t), is the real-valued function:
In applied mathematics, the Wiener–Khinchin theorem or Wiener–Khintchine theorem, also known as the Wiener–Khinchin–Einstein theorem or the Khinchin–Kolmogorov theorem, states that the autocorrelation function of a wide-sense-stationary random process has a spectral decomposition given by the power spectrum of that process.
The Hilbert spectrum, named after David Hilbert, is a statistical tool that can help in distinguishing among a mixture of moving signals. The spectrum itself is decomposed into its component sources using independent component analysis. The separation of the combined effects of unidentified sources has applications in climatology, seismology, and biomedical imaging.
Structural dynamics is a type of structural analysis which covers the behavior of a structure subjected to dynamic loading. Dynamic loads include people, wind, waves, traffic, earthquakes, and blasts. Any structure can be subjected to dynamic loading. Dynamic analysis can be used to find dynamic displacements, time history, and modal analysis.
A pendulum is a body suspended from a fixed support so that it swings freely back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging it back and forth. The mathematics of pendulums are in general quite complicated. Simplifying assumptions can be made, which in the case of a simple pendulum allow the equations of motion to be solved analytically for small-angle oscillations.
Orbit determination is the estimation of orbits of objects such as moons, planets, and spacecraft. One major application is to allow tracking newly observed asteroids and verify that they have not been previously discovered. The basic methods were discovered in the 17th century and have been continuously refined.
The tip-speed ratio, λ, or TSR for wind turbines is the ratio between the tangential speed of the tip of a blade and the actual speed of the wind, . The tip-speed ratio is related to efficiency, with the optimum varying with blade design. Higher tip speeds result in higher noise levels and require stronger blades due to larger centrifugal forces.
The primary application of wind turbines is to generate energy using the wind. Hence, the aerodynamics is a very important aspect of wind turbines. Like most machines, wind turbines come in many different types, all of them based on different energy extraction concepts.
In aeronautics and marine hydrodynamics, the advance ratio is the ratio of the freestream fluid speed to the propeller, rotor, or cyclorotor tip speed. When a propeller-driven vehicle is moving at high speed relative to the fluid, or the propeller is rotating slowly, the advance ratio of its propeller(s) is a high number; and when it is moving at low speed, or the propeller is rotating at high speed, the advance ratio is a low number. The advance ratio is a useful non-dimensional quantity in helicopter and propeller theory, since propellers and rotors will experience the same angle of attack on every blade airfoil section at the same advance ratio regardless of actual forward speed. It is the inverse of the tip speed ratio used for wind turbines.
Nodal precession is the precession of the orbital plane of a satellite around the rotational axis of an astronomical body such as Earth. This precession is due to the non-spherical nature of a rotating body, which creates a non-uniform gravitational field. The following discussion relates to low Earth orbit of artificial satellites, which have no measurable effect on the motion of Earth. The nodal precession of more massive, natural satellites like the Moon is more complex.
Blade element momentum theory is a theory that combines both blade element theory and momentum theory. It is used to calculate the local forces on a propeller or wind-turbine blade. Blade element theory is combined with momentum theory to alleviate some of the difficulties in calculating the induced velocities at the rotor.
A variable speed wind turbine is one which is specifically designed to operate over a wide range of rotor speeds. It is in direct contrast to fixed speed wind turbine where the rotor speed is approximately constant. The reason to vary the rotor speed is to capture the maximum aerodynamic power in the wind, as the wind speed varies. The aerodynamic efficiency, or coefficient of power, for a fixed blade pitch angle is obtained by operating the wind turbine at the optimal tip-speed ratio as shown in the following graph.
A vertical-axis wind turbine (VAWT) is a type of wind turbine where the main rotor shaft is set transverse to the wind while the main components are located at the base of the turbine. This arrangement allows the generator and gearbox to be located close to the ground, facilitating service and repair. VAWTs do not need to be pointed into the wind, which removes the need for wind-sensing and orientation mechanisms. Major drawbacks for the early designs included the significant torque ripple during each revolution, and the large bending moments on the blades. Later designs addressed the torque ripple by sweeping the blades helically. Savonius vertical-axis wind turbines (VAWT) are not widespread, but their simplicity and better performance in disturbed flow-fields, compared to small horizontal-axis wind turbines (HAWT) make them a good alternative for distributed generation devices in an urban environment.
This article needs additional or more specific categories .(June 2023) |