SMG6

Last updated
SMG6
Protein SMG6 PDB 2dok.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases SMG6 , C17orf31, EST1A, SMG-6, hSMG5/7a, nonsense mediated mRNA decay factor, SMG6 nonsense mediated mRNA decay factor, hEST1A
External IDs OMIM: 610963 MGI: 2144117 HomoloGene: 23024 GeneCards: SMG6
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001170957
NM_001256827
NM_001256828
NM_001282326
NM_017575

Contents

NM_001002764

RefSeq (protein)

NP_001243756
NP_001243757
NP_001269255
NP_060045

NP_001002764

Location (UCSC) Chr 17: 2.06 – 2.3 Mb Chr 11: 74.82 – 75.06 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Telomerase-binding protein EST1A is an enzyme that in humans is encoded by the SMG6 gene on chromosome 17. [5] [6] [7] It is ubiquitously expressed in many tissues and cell types. [8] The C-terminus of the EST1A protein contains a PilT N-terminus (PIN) domain. This structure for this domain has been determined by X-ray crystallography. [9] SMG6 functions to bind single-stranded DNA in telomere maintenance and single-stranded RNA in nonsense-mediated mRNA decay (NMD). [10] [11] The SMG6 gene also contains one of 27 SNPs associated with increased risk of coronary artery disease. [12]

Structure

Gene

The SMG6 gene resides on chromosome 17 at the band 17p13.3 and contains 30 exons. [13] This gene produces 3 isoforms through alternative splicing. [14]

Protein

SMG6 is one of three human homologs for Est1p found in Saccharomyces cerevisiae. It contains a PIN domain, which is characteristic of proteins with ribonuclease activity. [15] The PIN domain forms an alpha/beta fold structure that similar to that found in 5' nucleases. [16] Within the PIN domain is a canonical triad of acidic residues that functions to cleave single-stranded RNA. [17] SMG6 also shares a phosphoserine-binding domain resembling the one in 14–3–3 proteins with its other two homologs, SMG5 and SMG7. This 14–3–3-like domain and a C-terminal helical hairpins domain with seven α-helices stacked perpendicular to the 14–3–3-like domain together form a monomeric tetratricopeptide region (TPR). Differences in the orientation and specific residues in the TPR between SMG6 and its homologs may account for why SMG6 does not form a complex with SMG5 and SMG7 when recruited by UPF1. [18]

Function

SMG6 is broadly expressed in all human tissues. It has dual functions in telomere maintenance and RNA surveillance pathways. SMG6 binds single-stranded telomere DNA and cooperates with telomerase reverse transcriptase to lengthen telomeres. [6] Overexpression of SMG6 induces anaphase bridges due to chromosome-end fusions and, thus, affects telomere capping, which may directly induce an apoptotic response. [19] [5] SMG6 also functions as an endonuclease in the NMD pathway. The catalytic activity of SMG6 resides in its PIN domain, which is required for the degradation of premature translation termination codons (PTC)-containing mRNAs in human cells. [20] SMG6 cleaves mRNA near the premature translocation-termination codons and requires UPF1 and SMG1 to reduce reporter mRNA levels. [21]

Clinical significance

In humans, selected genomic regions based on 150 SNPs were identified in a genome-wide association study (GWAS) on coronary artery disease. Accordingly, the association between recent smoking and the CpG sites within and near these coronary artery disease-related genes were investigated in 724 Caucasian subjects from the Rotterdam Study. The identified methylation sites were found in SMG6 together with other genes, and several of these sites exhibited lower methylation in subjects currently smoking compared to never smoking. [22]

Clinical marker

A multi-locus genetic risk score study based on a combination of 27 loci, including the SMG6 gene, identified individuals at increased risk for both incident and recurrent coronary artery disease events, as well as an enhanced clinical benefit from statin therapy. The study was based on a community cohort study (the Malmo Diet and Cancer study) and four additional randomized controlled trials of primary prevention cohorts (JUPITER and ASCOT) and secondary prevention cohorts (CARE and PROVE IT-TIMI 22). [12]

Related Research Articles

<span class="mw-page-title-main">Telomerase</span> Telomere-restoring protein active in the most rapidly dividing cells

Telomerase, also called terminal transferase, is a ribonucleoprotein that adds a species-dependent telomere repeat sequence to the 3' end of telomeres. A telomere is a region of repetitive sequences at each end of the chromosomes of most eukaryotes. Telomeres protect the end of the chromosome from DNA damage or from fusion with neighbouring chromosomes. The fruit fly Drosophila melanogaster lacks telomerase, but instead uses retrotransposons to maintain telomeres.

In genetics, a nonsense mutation is a point mutation in a sequence of DNA that results in a premature stop codon, or a nonsense codon in the transcribed mRNA, and in leading to a truncated, incomplete, and nonfunctional protein product. Nonsense mutation is not always harmful, the functional effect of a nonsense mutation depends on many aspects, such as the location of the stop codon within the coding DNA. For example, the effect of a nonsense mutation depends on the proximity of the nonsense mutation to the original stop codon, and the degree to which functional subdomains of the protein are affected. As nonsense mutations leads to premature termination of polypeptide chains; they are also called chain termination mutations.

<span class="mw-page-title-main">Nonsense-mediated decay</span> Elimination of mRNA with premature stop codons in eukaryotes

Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that exists in all eukaryotes. Its main function is to reduce errors in gene expression by eliminating mRNA transcripts that contain premature stop codons. Translation of these aberrant mRNAs could, in some cases, lead to deleterious gain-of-function or dominant-negative activity of the resulting proteins.

<span class="mw-page-title-main">Eukaryotic translation termination factor 1</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation termination factor 1 (eRF1), also known as TB3-1, is a protein that in humans is encoded by the ETF1 gene.

<span class="mw-page-title-main">RBM8A</span> Protein-coding gene in the species Homo sapiens

RNA-binding protein 8A is a protein that in humans is encoded by the RBM8A gene.

<span class="mw-page-title-main">UPF1</span> Protein-coding gene in the species Homo sapiens

Regulator of nonsense transcripts 1 is a protein that in humans is encoded by the UPF1 gene.

<span class="mw-page-title-main">Telomerase RNA component</span> NcRNA found in eukaryotes

Telomerase RNA component, also known as TR, TER or TERC, is an ncRNA found in eukaryotes that is a component of telomerase, the enzyme used to extend telomeres. TERC serves as a template for telomere replication by telomerase. Telomerase RNAs differ greatly in sequence and structure between vertebrates, ciliates and yeasts, but they share a 5' pseudoknot structure close to the template sequence. The vertebrate telomerase RNAs have a 3' H/ACA snoRNA-like domain.

<span class="mw-page-title-main">RNPS1</span> Protein-coding gene in the species Homo sapiens

RNA-binding protein with serine-rich domain 1 is a protein that in humans is encoded by the RNPS1 gene.

<span class="mw-page-title-main">UPF2</span> Protein-coding gene in the species Homo sapiens

Regulator of nonsense transcripts 2 is a protein that in humans is encoded by the UPF2 gene.

<span class="mw-page-title-main">UPF3B</span> Protein-coding gene in the species Homo sapiens

Regulator of nonsense transcripts 3B is a protein that in humans is encoded by the UPF3B gene.

<span class="mw-page-title-main">SMG1</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein kinase SMG1 is an enzyme that in humans is encoded by the SMG1 gene. SMG1 belongs to the phosphatidylinositol 3-kinase-related kinase protein family.

<span class="mw-page-title-main">UPF3A</span> Protein-coding gene in the species Homo sapiens

Regulator of nonsense transcripts 3A is a protein that in humans is encoded by the UPF3A gene.

<span class="mw-page-title-main">SMG5</span> Protein-coding gene in the species Homo sapiens

Protein SMG5 is a protein that in humans is encoded by the SMG5 gene. This protein contains a PIN domain that appears to have mutated the residues in the active site.

<span class="mw-page-title-main">PINX1</span> Protein-coding gene in the species Homo sapiens

PIN2/TERF1-interacting telomerase inhibitor 1, also known as PINX1, is a human gene. PINX1 is also known as PIN2 interacting protein 1. PINX1 is a telomerase inhibitor and a possible tumor suppressor.

<span class="mw-page-title-main">DCP1A</span> Protein found in humans

mRNA-decapping enzyme 1A is a protein that in humans is encoded by the DCP1A gene.

<span class="mw-page-title-main">SMG7</span> Protein-coding gene in the species Homo sapiens

Protein SMG7 is a protein that in humans is encoded by the SMG7 gene.

mRNA surveillance mechanisms are pathways utilized by organisms to ensure fidelity and quality of messenger RNA (mRNA) molecules. There are a number of surveillance mechanisms present within cells. These mechanisms function at various steps of the mRNA biogenesis pathway to detect and degrade transcripts that have not properly been processed.

<span class="mw-page-title-main">Exon junction complex</span> Protein complex assembled on mRNA

An exon junction complex (EJC) is a protein complex which forms on a pre-messenger RNA strand at the junction of two exons which have been joined together during RNA splicing. The EJC has major influences on translation, surveillance and localization of the spliced mRNA. It is first deposited onto mRNA during splicing and is then transported into the cytoplasm. There it plays a major role in post-transcriptional regulation of mRNA. It is believed that exon junction complexes provide a position-specific memory of the splicing event. The EJC consists of a stable heterotetramer core, which serves as a binding platform for other factors necessary for the mRNA pathway. The core of the EJC contains the protein eukaryotic initiation factor 4A-III bound to an adenosine triphosphate (ATP) analog, as well as the additional proteins Magoh and Y14. The binding of these proteins to nuclear speckled domains has been measured recently and it may be regulated by PI3K/AKT/mTOR signaling pathways. In order for the binding of the complex to the mRNA to occur, the eIF4AIII factor is inhibited, stopping the hydrolysis of ATP. This recognizes EJC as an ATP dependent complex. EJC also interacts with a large number of additional proteins; most notably SR proteins. These interactions are suggested to be important for mRNA compaction. The role of EJC in mRNA export is controversial.

<span class="mw-page-title-main">C14orf102</span> Protein-coding gene in the species Homo sapiens

Chromosome 14 open reading frame 102 is a 3810bp protein-encoding gene that is highly conserved among its non-distant orthologs. It contains 20 introns and 8 different RNAs - 7 splice variants and 1 unspliced form - and is located on the reverse strand of chromosome 14 (14q32.11). The protein encoded by this gene belongs to the UPF0614 family of Up-frameshift proteins and has a molecular weight of 132.417 kDa and isoelectric point of 7.88. It is expected to have a protein binding function and localization in the cytoplasm.

<span class="mw-page-title-main">Telomeric repeat–containing RNA</span> Long non-coding RNA transcribed from telomeres

Telomeric repeat–containing RNA (TERRA) is a long non-coding RNA transcribed from telomeres - repetitive nucleotide regions found on the ends of chromosomes that function to protect DNA from deterioration or fusion with neighboring chromosomes. TERRA has been shown to be ubiquitously expressed in almost all cell types containing linear chromosomes - including humans, mice, and yeasts. While the exact function of TERRA is still an active area of research, it is generally believed to play a role in regulating telomerase activity as well as maintaining the heterochromatic state at the ends of chromosomes. TERRA interaction with other associated telomeric proteins has also been shown to help regulate telomere integrity in a length-dependent manner.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000070366 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000038290 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 Reichenbach P, Höss M, Azzalin CM, Nabholz M, Bucher P, Lingner J (April 2003). "A human homolog of yeast Est1 associates with telomerase and uncaps chromosome ends when overexpressed". Current Biology. 13 (7): 568–74. doi: 10.1016/S0960-9822(03)00173-8 . PMID   12676087. S2CID   14423276.
  6. 1 2 Snow BE, Erdmann N, Cruickshank J, Goldman H, Gill RM, Robinson MO, Harrington L (April 2003). "Functional conservation of the telomerase protein Est1p in humans". Current Biology. 13 (8): 698–704. doi: 10.1016/S0960-9822(03)00210-0 . PMID   12699629. S2CID   6685276.
  7. "Entrez Gene: SMG6 Smg-6 homolog, nonsense mediated mRNA decay factor (C. elegans)".
  8. "BioGPS - your Gene Portal System". biogps.org. Retrieved 2016-10-12.
  9. Takeshita D, Zenno S, Lee WC, Saigo K, Tanokura M (July 2006). "Crystallization and preliminary X-ray analysis of the PIN domain of human EST1A". Acta Crystallographica Section F. 62 (Pt 7): 656–8. doi:10.1107/S1744309106020057. PMC   2242961 . PMID   16820686.
  10. Snow BE, Erdmann N, Cruickshank J, Goldman H, Gill RM, Robinson MO, Harrington L (April 2003). "Functional conservation of the telomerase protein Est1p in humans". Current Biology. 13 (8): 698–704. doi: 10.1016/s0960-9822(03)00210-0 . PMID   12699629. S2CID   6685276.
  11. Huntzinger E, Kashima I, Fauser M, Saulière J, Izaurralde E (December 2008). "SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan". RNA. 14 (12): 2609–17. doi:10.1261/rna.1386208. PMC   2590965 . PMID   18974281.
  12. 1 2 Mega JL, Stitziel NO, Smith JG, Chasman DI, Caulfield MJ, Devlin JJ, Nordio F, Hyde CL, Cannon CP, Sacks FM, Poulter NR, Sever PS, Ridker PM, Braunwald E, Melander O, Kathiresan S, Sabatine MS (June 2015). "Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials". Lancet. 385 (9984): 2264–71. doi:10.1016/S0140-6736(14)61730-X. PMC   4608367 . PMID   25748612.
  13. "SMG6 SMG6, nonsense mediated mRNA decay factor [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2016-10-12.
  14. "SMG6 - Telomerase-binding protein EST1A - Homo sapiens (Human) - SMG6 gene & protein". www.uniprot.org. Retrieved 2016-10-12.
  15. Glavan F, Behm-Ansmant I, Izaurralde E, Conti E (November 2006). "Structures of the PIN domains of SMG6 and SMG5 reveal a nuclease within the mRNA surveillance complex". The EMBO Journal. 25 (21): 5117–25. doi:10.1038/sj.emboj.7601377. PMC   1630413 . PMID   17053788.
  16. Takeshita D, Zenno S, Lee WC, Saigo K, Tanokura M (September 2007). "Crystal structure of the PIN domain of human telomerase-associated protein EST1A". Proteins. 68 (4): 980–9. doi:10.1002/prot.21351. PMID   17557331. S2CID   43477604.
  17. Huntzinger E, Kashima I, Fauser M, Saulière J, Izaurralde E (December 2008). "SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan". RNA. 14 (12): 2609–17. doi:10.1261/rna.1386208. PMC   2590965 . PMID   18974281.
  18. Chakrabarti S, Bonneau F, Schüssler S, Eppinger E, Conti E (August 2014). "Phospho-dependent and phospho-independent interactions of the helicase UPF1 with the NMD factors SMG5-SMG7 and SMG6". Nucleic Acids Research. 42 (14): 9447–60. doi:10.1093/nar/gku578. PMC   4132714 . PMID   25013172.
  19. Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T (February 1999). "p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2". Science. 283 (5406): 1321–5. doi:10.1126/science.283.5406.1321. PMID   10037601.
  20. Huntzinger E, Kashima I, Fauser M, Saulière J, Izaurralde E (December 2008). "SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan". RNA. 14 (12): 2609–17. doi:10.1261/rna.1386208. PMC   2590965 . PMID   18974281.
  21. Nicholson P, Josi C, Kurosawa H, Yamashita A, Mühlemann O (August 2014). "A novel phosphorylation-independent interaction between SMG6 and UPF1 is essential for human NMD". Nucleic Acids Research. 42 (14): 9217–35. doi:10.1093/nar/gku645. PMC   4132754 . PMID   25053839.
  22. Steenaard RV, Ligthart S, Stolk L, Peters MJ, van Meurs JB, Uitterlinden AG, Hofman A, Franco OH, Dehghan A (2015-01-01). "Tobacco smoking is associated with methylation of genes related to coronary artery disease". Clinical Epigenetics. 7: 54. doi:10.1186/s13148-015-0088-y. PMC   4443552 . PMID   26015811.

Further reading