San Angelo Formation

Last updated
San Angelo Formation
Stratigraphic range: Kungurian
Type Formation
Unit of Pease River Group
Underlies Blaine Formation
Overlies Clear Fork Group
Location
Region Texas
Country United States

The San Angelo Formation is a geologic formation in Texas. It preserves fossils dating back to the Permian period. Along with the Chickasha Formation is one of the two geologically youngest formations in North America to preserve fossils of caseids, and it is the youngest one to preserve remains of undoubted sphenacodontids, namely, Dimetrodon angelensis. [1] [2]

Contents

Stratigraphy and age

Some studies argued that the San Angelo Formation belongs to the Kungurian stage of the Cisuralian series because it underlies the Blaine Formation, which is, according to the same studies, either upper Kungurian or lower Guadalupian. [3] [4] However, a recent study concluded that Olson was correct in regarding the San Angelo Formation as belonging to the Roadian, and that the Blaine Formation also dates from the Roadian. [2]

Fossil content

Everett C. Olson regarded the San Angelo Formation as preserving some of the oldest known therapsids, several of which he classified in a taxon he called Eotheriodonta. [1] These taxa are now interpreted as caseids and sphenacodontids, not therapsids. [5]

Color key
Taxon Reclassified taxonTaxon falsely reported as presentDubious taxon or junior synonym Ichnotaxon Ootaxon Morphotaxon
Notes
Uncertain or tentative taxa are in small text; crossed out taxa are discredited.

Synapsids

GenusSpeciesLocationMaterialNotesImages
Angelosaurus A. dolaniA caseid
Caseoides C. sanangeloensisA caseid
Caseopsis C. agilisA caseid
Cotylorhynchus C. hancockiA caseid
Dimacrodon D. hottoni
Dimetrodon D. angelensisA sphenacodontid
Driveria D. ponderosa
Eosyodon E. hudsoniA dubious sphenacodontid [6]
Gorgodon G. minutus
Knoxosaurus K. niteckii
Mastersonia M. driverensis
Steppesaurus S. gurleyi
Tappenosaurus T. magnus

See also

Related Research Articles

The Guadalupian is the second and middle series/epoch of the Permian. The Guadalupian was preceded by the Cisuralian and followed by the Lopingian. It is named after the Guadalupe Mountains of New Mexico and Texas, and dates between 272.95 ± 0.5 – 259.1 ± 0.4 Mya. The series saw the rise of the therapsids, a minor extinction event called Olson's Extinction and a significant mass extinction called the end-Capitanian extinction event. The Guadalupian was previously known as the Middle Permian.

<span class="mw-page-title-main">Roadian</span> Fifth stage of the Permian

In the geologic timescale, the Roadian is an age or stage of the Permian. It is the earliest or lower of three subdivisions of the Guadalupian Epoch or Series. The Roadian lasted between 273.01 and 266.9 million years ago (Ma). It was preceded by the Kungurian and followed by the Wordian.

<span class="mw-page-title-main">Sphenacodontidae</span> Extinct family of synapsids

Sphenacodontidae is an extinct family of sphenacodontoid synapsids. Small to large, advanced, carnivorous, Late Pennsylvanian to middle Permian "pelycosaurs". The most recent one, Dimetrodon angelensis, is from the latest Kungurian or, more likely, early Roadian San Angelo Formation. However, given the notorious incompleteness of the fossil record, a recent study concluded that the Sphenacodontidae may have become extinct as recently as the early Capitanian. Primitive forms were generally small, but during the later part of the early Permian these animals grew progressively larger, to become the top predators of terrestrial environments. Sphenacodontid fossils are so far known only from North America and Europe.

<span class="mw-page-title-main">Caseidae</span> Extinct family of synapsids

Caseidae are an extinct family of basal synapsids that lived from the Late Carboniferous to Middle Permian between about 300 and 265 million years ago. Fossils of these animals come from the south-central part of the United States, from various parts of Europe, and possibly from South Africa if the genus Eunotosaurus is indeed a caseid as some authors proposed in 2021. Caseids show great taxonomic and morphological diversity. The most basal taxa were small insectivorous and omnivorous forms that lived mainly in the Upper Carboniferous and Lower Permian, such as Eocasea, Callibrachion, and Martensius. This type of caseid persists until the middle Permian with Phreatophasma and may be Eunotosaurus. During the early Permian, the clade is mainly represented by many species that adopted a herbivorous diet. Some have evolved into gigantic forms that can reach 6–7 metres (20–23 ft) in length, such as Cotylorhynchus hancocki and Alierasaurus ronchii, making them the largest Permian synapsids. Caseids are considered important components of early terrestrial ecosystems in vertebrate history because the numerous herbivorous species in this family are among the first terrestrial tetrapods to occupy the role of primary consumer. The caseids experienced a significant evolutionary radiation at the end of the early Permian, becoming, with the captorhinid eureptiles, the dominant herbivores of terrestrial ecosystems in place of the edaphosaurids and diadectids.

Caseoides is an extinct genus of large caseid synapsids that lived in the Kungurian Age. It was about 3 metres (9.8 ft) long, and like many other caseids, it was herbivorous and aquatic. It weighed between 150 and 200 kilograms. Its fossils were found in San Angelo Formation, Texas. Caseoides was very similar to Casea, but was slightly larger in size. Caseoides was a heavily built creature, as are most of the Caseids. In the development of its proportionally thick, stout limbs it represents the culmination of the Casea lineage. Its relatives became smaller in size during the Roadian Age. Only poorly preserved postcranial material is known including limbs.

<i>Cotylorhynchus</i> Extinct genus of synapsids

Cotylorhynchus is an extinct genus of herbivorous caseid synapsids that lived during the late Lower Permian (Kungurian) and possibly the early Middle Permian (Roadian) in what is now Texas and Oklahoma in the United States. The large number of specimens found make it the best-known caseid. Like all large herbivorous caseids, Cotylorhynchus had a short snout sloping forward and very large external nares. The head was very small compared to the size of the body. The latter was massive, barrel-shaped, and ended with a long tail. The limbs were short and robust. The hands and feet had short, broad fingers with powerful claws. The barrel-shaped body must have housed large intestines, suggesting that the animal had to feed on a large quantity of plants of low nutritional value. Caseids are generally considered to be terrestrial, though a semi-aquatic lifestyle has been proposed by some authors. The genus Cotylorhynchus is represented by three species, the largest of which could reach more than 6 m in length. However, a study published in 2022 suggests that the genus may be paraphyletic, with two of the three species possibly belonging to separate genera.

Angelosaurus is an extinct genus of herbivorous caseid synapsids that lived during the late Lower Permian (Kungurian) and early Middle Permian (Roadian) in what is now Texas and Oklahoma in the United States. Like other herbivorous caseids, it had a small head, large barrel-shaped body, long tail, and massive limbs. Angelosaurus differs from other caseids by the extreme massiveness of its bones, particularly those of the limbs, which show a strong development of ridges, processes, and rugosities for the attachment of muscles and tendons. Relative to its body size, the limbs of Angelosaurus were shorter and wider than those of other caseids. The ungual phalanges looked more like hooves than claws. The few known cranial elements show that the skull was short and more robust than that of the other representatives of the group. Angelosaurus is also distinguished by its bulbous teeth with shorter and wider crowns than those of other caseids. Their morphology and the high rate of wear they exhibit suggests a diet quite different from that of other large herbivorous caseids, and must have been based on particularly tough plants. A study published in 2022 suggests that the genus may be paraphyletic, with Angelosaurus possibly only represented by its type species A. dolani.

<i>Ennatosaurus</i> Extinct genus of synapsids

Ennatosaurus is an extinct genus of caseid synapsid that lived during the Middle Permian in northern European Russia. The genus is only represented by its type species, Ennatosaurus tecton, which was named in 1956 by Ivan Antonovich Efremov. The species is known from at least six skulls associated with their lower jaws, as well as from the postcranial bones of several juvenile individuals. Ennatosaurus has the typical caseid skull with a short snout tilted forward and very large external nares. However, it differs from other derived caseids by its postcranial skeleton with smaller proportions compared to the size of the skull. As with other advanced caseids, the teeth of Ennatosaurus were well suited for slicing and cutting vegetation. The presence of a highly developed hyoid apparatus indicates the presence of a massive and mobile tongue, which had to work in collaboration with the palatal teeth during swallowing. With a late Roadian - early Wordian age, Ennatosaurus is one of the last known caseids.

<i>Dimacrodon</i> Extinct genus of synapsids

Dimacrodon is an extinct genus of non-mammalian synapsid from the latest Early Permian San Angelo Formation of Texas. It is distinguished by toothless, possibly beaked jaw tips, large lower canines and a thin bony crest on top of its head. Previously thought to be an anomodont therapsid related to dicynodonts, it was later found to lack any diagnostic features of anomodonts or even therapsids and instead appears to be a 'pelycosaur'-grade synapsid of uncertain classification.

Eosyodon is a dubious genus of extinct non-mammalian synapsids from the Permian of Texas. Its type and only species is Eosyodon hudsoni. Though it was originally interpreted as an early therapsid, it is probably a member of Sphenacodontidae, the family of synapsids that includes Dimetrodon.

Knoxosaurus is an extinct genus of non-mammalian synapsids containing the species Knoxosaurus niteckii that existed approximately 279.5 to 268 million years ago. It was named by American paleontologist Everett C. Olson in 1962 on the basis of fragmentary fossils from Middle Permian-age deposits in the San Angelo Formation of Texas in the United States. Olson placed Knoxosaurus in a new infraorder called Eotheriodontia, which he considered a transitional group between the more reptile-like "pelycosaurs" and the more mammal-like therapsids. Knoxosaurus and Olson's other eotheriodonts were later considered to be undiagnostic remains of basal synapsids, no more closely related to therapsids than are other pelycosaur-grade synapsids.

<i>Phreatophasma</i> Extinct genus of synapsids

Phreatophasma is an extinct genus of synapsids from the Middle Permian of European Russia. It includes only one species, Phreatophasma aenigmatum, which is itself known from a single femur found in a mine near the town of Belebei in Bashkortostan. Phreatophasma comes from a fossil assemblage that is latest Ufimian to earliest Kazanian in age under the Russian stratigraphic scheme, correlating with the Roadian Age under the international stratigraphic timescale. Because the species is based on a single specimen with few diagnostic anatomical features, uncertainty remains as to where it belongs in tetrapod phylogeny; originally interpreted in 1954 as an enigmatic "theromorph" synapsid by Soviet paleontologist Ivan Yefremov, Phreatophasma was later described as a therapsid incertae sedis by American paleontologist Alfred Romer in 1956 and then as a member of a basal synapsid family called Caseidae starting with Everett C. Olson in 1962. Olson's classification was later supported by Canadian paleontologist Robert Reisz in 1986 and American paleontologist Robert L. Carroll in 1988. Ivakhneneko et al. (1997) and Maddin et al. (2008) both considered Phreatophasma an indeterminate synapsid.

<i>Raranimus</i> Extinct genus of therapsids

Raranimus is an extinct genus of therapsids of the Middle Permian. It was described in 2009 from a partial skull found in 1998 from the Dashankou locality of the Qingtoushan Formation, outcropping in the Qilian Mountains of Gansu, China. The genus is the most basal known member of the clade Therapsida, to which the later Mammalia belong.

Olson's Extinction was a mass extinction that occurred 273 million years ago in the late Cisuralian or early Guadalupian epoch of the Permian period, predating the much larger Permian–Triassic extinction event. The event is named after American paleontologist Everett C. Olson, who first identified the gap in fossil record indicating a sudden change between the early Permian and middle/late Permian faunas. Some authors also place a hiatus in the continental fossil record around that time, but others disagree. This event has been argued by some authors to have affected many taxa, including embryophytes, marine metazoans, and tetrapods.

Everett Claire Olson was an American zoologist, paleontologist, and geologist noted for his seminal research of origin and evolution of vertebrate animals. Through his research studying terrestrial vertebrate fossils he identified intervals of extinction in the Permian and Triassic. He developed the concept of chronofauna, which he defined as "a geographically restricted, natural assemblage of interacting animal populations that has maintained its basic structure over a geologically significant period of time". He also proposed stratigraphic correlations between North American and Russian vertebrate-bearing strata for which additional support was found much later. The drop in terrestrial vertebrate diversity he proposed in at the end of the Kungurian stage of the Permian period that occurred 270 million years ago now carries his name - Olson's Extinction. Alternatively, some scientists think that the change was gradual but that it looks abrupt because of a gap in the fossil record, called "Olson's Gap". Some of his other notable research also included the taxa Slaugenhopia, Trimerorhachis, and Waggoneria.

Gorgodon is an extinct genus of basal synapsids. The genus is monotypic, known only from the type species Gorgodon minutus from the Early Permian of the southwestern United States. The only known remains of Gorgodon are two fossils consisting of fragments of the skull. Gorgodon was described and named by paleontologist Everett C. Olson in 1962 from the San Angelo Formation in Knox County, Texas. Based on what is known of Gorgodon—the squamosal, quadrate, and pterygoid bones of the back of the skull, the maxilla and premaxilla bones that make up the front of the skull, and several teeth—Gorgodon had a relatively large temporal fenestra and a pair large, conical caniniform teeth at the front of the jaw. Other distinguishing features of Gorgodon include the fused connection between the quadrate and squamosal bones and a long transverse process of the pterygoid.

The Chickasha Formation is a geologic formation in Oklahoma. It preserves fossils dating back to the Roadian stage of the Middle Permian. These include, among others, the dissorophoid temnospondyl Nooxobeia gracilis, the lepospondyl Diplocaulus parvus, and the captorhinid Rothianiscus robusta, initially called Rothia robusta by Olson.

<i>Alierasaurus</i> Extinct genus of synapsids

Alierasaurus is an extinct genus of caseid synapsid that lived during the early Middle Permian (Roadian) in what is now Sardinia. It is represented by a single species, the type species Alierasaurus ronchii. Known from a very large partial skeleton found within the Cala del Vino Formation, Alierasaurus is one of the largest known caseids. It closely resembles Cotylorhynchus, another giant caseid from the San Angelo Formation in Texas. The dimensions of the preserved foot elements and caudal vertebrae suggest an estimated total length of about 6 or 7 m for Alierasaurus. In fact, the only anatomical features that differ between Alierasaurus and Cotylorhynchus are found in the bones of the feet; Alierasaurus has a longer and thinner fourth metatarsal and it has ungual bones at the tips of the toes that are pointed and claw-like rather than flattened as in other caseids. Alierasaurus and Cotylorhynchus both have very wide, barrel-shaped rib cages indicating that they were herbivores that fed primarily on high-fiber plant material.

<span class="mw-page-title-main">Teekloof Formation</span> Late Permian geological formation that forms part of the Beaufort Group of South Africa

The Teekloof Formation is a geological formation that forms part of the Beaufort Group, one of the five geological groups that comprises the Karoo Supergroup in South Africa. The Teekloof Formation is the uppermost formation of Adelaide Subgroup deposits West of 24ºE and contains Middle to Late Permian-aged deposits and four biozones of the Beaufort Group. It overlies the Abrahamskraal Formation. The Teekloof Formation does not underlie other units other than the younger Karoo dolerites and sills that relate to the emplacement of the Early Jurassic Drakensberg Group to the east. Outcrops and exposures of the Teekloof Formation range from Sutherland through the mountain escarpments between Fraserburg and Beaufort West. The northernmost localities of the Teekloof Formation are found by Loxton, Victoria West and Richmond.

References

  1. 1 2 Olson 1962.
  2. 1 2 Laurin, Michel; Hook, Robert W. (2022). "The age of North America's youngest Paleozoic continental vertebrates: a review of data from the Middle Permian Pease River (Texas) and El Reno (Oklahoma) Groups". BSGF - Earth Sciences Bulletin. 193: 10. doi:10.1051/bsgf/2022007.
  3. DiMichele et al. 2001.
  4. Lucas & Golubev 2019.
  5. Sidor & Hopson 1995.
  6. Kammerer 2011, p. 291.

Bibliography