Chickasha Formation

Last updated
Chickasha Formation
Stratigraphic range: Roadian
Type Formation
Location
Region Oklahoma
Country United States
Type section
Named for Chickasha, Grady County, Oklahoma
Named byCharles Newton Gould, 1924 [1]

The Chickasha Formation is a geologic formation in Oklahoma. It preserves fossils dating back to the Roadian stage of the Middle Permian. [2] These include, among others, the dissorophoid temnospondyl Nooxobeia gracilis [3] , the lepospondyl Diplocaulus parvus (Amphibia: Nectridea), [4] and the captorhinid Rothianiscus robusta, initially called Rothia robusta by Olson [5] .

See also

Related Research Articles

<span class="mw-page-title-main">Dissorophidae</span> Extinct family of amphibians

Dissorophidae is an extinct family of medium-sized, temnospondyl amphibians that flourished during the late Carboniferous and early Permian periods. The clade is known almost exclusively from North America.

<i>Diplocaulus</i> Extinct genus of amphibians

Diplocaulus is an extinct genus of lepospondyl amphibians which lived from the Late Carboniferous to the Late Permian of North America and Africa. Diplocaulus is by far the largest and best-known of the lepospondyls, characterized by a distinctive boomerang-shaped skull. Remains attributed to Diplocaulus have been found from the Late Permian of Morocco and represent the youngest-known occurrence of a lepospondyl. There are several species that have been discovered in this genus which are Diplocaudus salamandroides, Diplocaulus magnicornis, Diplocaulus brevirostris, Diplocaulus recurvatus?, and Diplocaulus minimus?.

<i>Cotylorhynchus</i> Extinct genus of synapsids

Cotylorhynchus is an extinct genus of herbivorous caseid synapsids that lived during the late Lower Permian (Kungurian) and possibly the early Middle Permian (Roadian) in what is now Texas and Oklahoma in the United States. The large number of specimens found make it the best-known caseid. Like all large herbivorous caseids, Cotylorhynchus had a short snout sloping forward and very large external nares. The head was very small compared to the size of the body. The latter was massive, barrel-shaped, and ended with a long tail. The limbs were short and robust. The hands and feet had short, broad fingers with powerful claws. The barrel-shaped body must have housed large intestines, suggesting that the animal had to feed on a large quantity of plants of low nutritional value. Caseids are generally considered to be terrestrial, though a semi-aquatic lifestyle has been proposed by some authors. The genus Cotylorhynchus is represented by three species, the largest of which could reach more than 6 m in length. However, a study published in 2022 suggests that the genus may be paraphyletic, with two of the three species possibly belonging to separate genera.

Angelosaurus is an extinct genus of herbivorous caseid synapsids that lived during the late Lower Permian (Kungurian) and early Middle Permian (Roadian) in what is now Texas and Oklahoma in the United States. Like other herbivorous caseids, it had a small head, large barrel-shaped body, long tail, and massive limbs. Angelosaurus differs from other caseids by the extreme massiveness of its bones, particularly those of the limbs, which show a strong development of ridges, processes, and rugosities for the attachment of muscles and tendons. Relative to its body size, the limbs of Angelosaurus were shorter and wider than those of other caseids. The ungual phalanges looked more like hooves than claws. The few known cranial elements show that the skull was short and more robust than that of the other representatives of the group. Angelosaurus is also distinguished by its bulbous teeth with shorter and wider crowns than those of other caseids. Their morphology and the high rate of wear they exhibit suggests a diet quite different from that of other large herbivorous caseids, and must have been based on particularly tough plants. A study published in 2022 suggests that the genus may be paraphyletic, with Angelosaurus possibly only represented by its type species A. dolani.

<i>Varanodon</i> Extinct genus of tetrapods

Varanodon is an extinct genus of amniotes from the family Varanopidae. It has been found in the Chickasha Formation of Oklahoma, which dates to the Roadian stage of the Middle Permian. The largest varanopid known at the time of its description, with a skull length of 17.5 centimetres (6.9 in), it was closely related to and lived alongside its much larger relative Watongia. The two may represent growth stages of a single animal.

<span class="mw-page-title-main">Trematopidae</span> Extinct family of amphibians

Trematopidae is a family of dissorophoid temnospondyl spanning the late Carboniferous to the early Permian. Together with Dissorophidae, the family forms Olsoniformes, a clade comprising the medium-large terrestrial dissorophoids. Trematopids are known from numerous localities in North America, primarily in New Mexico, Oklahoma, and Texas, and from the Bromacker quarry in Germany.

Fayella is an extinct genus of dubious temnospondyl from the Early Permian (Guadalupian) of Oklahoma.

Kourerpeton is an extinct genus of dvinosaurian temnospondyl. Fossils of Kourerpeton were discovered in a window of a barber's shop in either Bisbee or Mesa, Arizona. Kourerpeton was named in 1976, with the type and only species being K. bradyi. It was originally assigned to the monotypic family Kourerpetidae, which has been alternatively spelled Kourerpetontidae.

<i>Watongia</i> Extinct genus of synapsids

Watongia is an extinct genus of non-mammalian synapsids from Middle Permian of Oklahoma. Only one species has been described, Watongia meieri, from the Chickasha Formation. It was assigned to family Gorgonopsidae by Olson and to Eotitanosuchia by Carroll. Reisz and collaborators assigned the genus in Varanopidae. Based on comparisons of its vertebrae with other varanopids, it was the largest varanopid with a body length of approximately 2 metres. It was a contemporary of its closest relative, the much smaller Varanodon; the two may possibly represent growth stages of a single animal.

Olson's Extinction was a mass extinction that occurred 273 million years ago in the late Cisuralian or early Guadalupian epoch of the Permian period, predating the much larger Permian–Triassic extinction event. The event is named after American paleontologist Everett C. Olson, who first identified the gap in fossil record indicating a sudden change between the early Permian and middle/late Permian faunas. Some authors also place a hiatus in the continental fossil record around that time, but others disagree. This event has been argued by some authors to have affected many taxa, including embryophytes, marine metazoans, and tetrapods.

Everett Claire Olson was an American zoologist, paleontologist, and geologist noted for his seminal research of origin and evolution of vertebrate animals. Through his research studying terrestrial vertebrate fossils he identified intervals of extinction in the Permian and Triassic. He developed the concept of chronofauna, which he defined as "a geographically restricted, natural assemblage of interacting animal populations that has maintained its basic structure over a geologically significant period of time". He also proposed stratigraphic correlations between North American and Russian vertebrate-bearing strata for which additional support was found much later. The drop in terrestrial vertebrate diversity he proposed in at the end of the Kungurian stage of the Permian period that occurred 270 million years ago now carries his name - Olson's Extinction. Alternatively, some scientists think that the change was gradual but that it looks abrupt because of a gap in the fossil record, called "Olson's Gap". Some of his other notable research also included the taxa Slaugenhopia, Trimerorhachis, and Waggoneria.

<span class="mw-page-title-main">Paleontology in Oklahoma</span>

Paleontology in Oklahoma refers to paleontological research occurring within or conducted by people from the U.S. state of Oklahoma. Oklahoma has a rich fossil record spanning all three eras of the Phanerozoic Eon. Oklahoma is the best source of Pennsylvanian fossils in the United States due to having an exceptionally complete geologic record of the epoch. From the Cambrian to the Devonian, all of Oklahoma was covered by a sea that would come to be home to creatures like brachiopods, bryozoans, graptolites and trilobites. During the Carboniferous, an expanse of coastal deltaic swamps formed in areas of the state where early tetrapods would leave behind footprints that would later fossilize. The sea withdrew altogether during the Permian period. Oklahoma was home a variety of insects as well as early amphibians and reptiles. Oklahoma stayed dry for most of the Mesozoic. During the Late Triassic, carnivorous dinosaurs left behind footprints that would later fossilize. During the Cretaceous, however, the state was mostly covered by the Western Interior Seaway, which was home to huge ammonites and other marine invertebrates. During the Cenozoic, Oklahoma became home to creatures like bison, camels, creodonts, and horses. During the Ice Age, the state was home to mammoths and mastodons. Local Native Americans are known to have used fossils for medicinal purposes. The Jurassic dinosaur Saurophaganax maximus is the Oklahoma state fossil.

The Duncan Formation is a geologic formation in Oklahoma. It preserves fossils dating back to the Permian period.

<span class="mw-page-title-main">Archer City Formation</span> Geologic formation in Texas, United States

The Archer City Formation is a geological formation in north-central Texas, preserving fossils from the Asselian and early Sakmarian stages of the Permian period. It is the earliest component of the Texas red beds, introducing an tropical ecosystem which will persist in the area through the rest of the Early Permian. The Archer City Formation is preceded by the cool Carboniferous swamp sediments of the Markley Formation, and succeeded by the equally fossiliferous red beds of the Nocona Formation. The Archer City Formation was not named as a unique geological unit until the late 1980s. Older studies generally labelled its outcrops as the Moran or Putnam formations, which are age-equivalent marine units to the southwest.

The Arroyo Formation, sometimes termed the Lower Clear Fork Formation, is a geologic formation in Texas. It preserves fossils dating back to the Kungurian stage of the Permian period. It is the lower-most portion of the Clear Fork Group, part of a series of fossiliferous Permian strata in the south-central United States known as the red beds.

<span class="mw-page-title-main">Vale Formation</span> Geologic formation in Texas, United States

The Vale Formation is a geologic formation in Texas. It preserves fossils dating back to the Permian period. Diplocaulus recurvatus is one of the creatures discovered there.

The San Angelo Formation is a geologic formation in Texas. It preserves fossils dating back to the Permian period. It is one of the geologically youngest formations to preserve fossils of pelycosaurs.

This timeline of Permian research is a chronological listing of events in the history of geology and paleontology focused on the study of earth during the span of time lasting from 298.9–252.17 million years ago and the legacies of this period in the rock and fossil records.

<i>Nooxobeia</i> Genus of amphibians (fossil)

Nooxobeia is an extinct genus of dissorophid temnospondyl from the Early Permian (Guadalupian) of Oklahoma. The generic name is derived from the Arapaho word nooxobe, which means frog.

<span class="mw-page-title-main">Richards Spur</span>

Richards Spur is a Permian fossil locality located at the Dolese Brothers Limestone Quarry north of Lawton, Oklahoma. The locality preserves clay and mudstone fissure fills of a karst system eroded out of Ordovician limestone and dolomite, with the infilling dating to the Artinskian stage of the early Permian (Cisuralian), around 289 to 286 million years ago. Fossils of terrestrial animals are abundant and well-preserved, representing one of the most diverse Paleozoic tetrapod communities known. A common historical name for the site is Fort Sill, in reference to the nearby military base. Fossils were first reported at the quarry by workers in 1932, spurring a wave of collecting by local and international geologists. Early taxa of interest included the abundant reptile Captorhinus and microsaurs such as Cardiocephalus and Euryodus. Later notable discoveries include Doleserpeton, the most diverse assortment of parareptiles in the Early Permian, and the rare early diapsid Orovenator.

References

  1. Gould, Charles N. (1924). "A new classification of the Permian redbeds of southwestern Oklahoma". American Association of Petroleum Geologists Bulletin. 8 (3): 322–341.
  2. Laurin, Michel; Hook, Robert W. (2022). "The age of North America's youngest Paleozoic continental vertebrates: a review of data from the Middle Permian Pease River (Texas) and El Reno (Oklahoma) Groups". BSGF - Earth Sciences Bulletin. 193: 10. doi: 10.1051/bsgf/2022007 . ISSN   1777-5817.
  3. Gee, Bryan M.; Scott, Diane; Reisz, Robert R. (October 2018). "Reappraisal of the Permian dissorophid Fayella chickashaensis". Canadian Journal of Earth Sciences. 55 (10): 1103–1114. doi:10.1139/cjes-2018-0053.
  4. Olson, Everett C. (1972). "Diplocaulus parvus n. sp. (Amphibia: Nectridea) from the Chickasha Formation (Permian: Guadalupian) of Oklahoma". Journal of Paleontology. 46 (5): 656–659. ISSN   0022-3360.
  5. Olson, E. C. (1965). "New Permian Vertebrates from the Chickasha Formation in Oklahoma". New Permian Vertebrates from the Chickasha Formation in Oklahoma. 70: 1–70.