Sensory substitution

Last updated

Sensory substitution is a change of the characteristics of one sensory modality into stimuli of another sensory modality.

Contents

A sensory substitution system consists of three parts: a sensor, a coupling system, and a stimulator. The sensor records stimuli and gives them to a coupling system which interprets these signals and transmits them to a stimulator. In case the sensor obtains signals of a kind not originally available to the bearer it is a case of sensory augmentation. Sensory substitution concerns human perception and the plasticity of the human brain; and therefore, allows us to study these aspects of neuroscience more through neuroimaging.

Sensory substitution systems may help people by restoring their ability to perceive certain defective sensory modality by using sensory information from a functioning sensory modality.

History

The idea of sensory substitution was introduced in the 1980s by Paul Bach-y-Rita as a means of using one sensory modality, mainly tactition, to gain environmental information to be used by another sensory modality, mainly vision. [1] [2] Thereafter, the entire field was discussed by Chaim-Meyer Scheff in "Experimental model for the study of changes in the organization of human sensory information processing through the design and testing of non-invasive prosthetic devices for sensory impaired people". [3] The first sensory substitution system was developed by Bach-y-Rita et al. as a means of brain plasticity in congenitally blind individuals. [4] After this historic invention, sensory substitution has been the basis of many studies investigating perceptive and cognitive neuroscience. Sensory substitution is often employed to investigate predictions of the embodied cognition framework. Within the theoretical framework specifically the concept of sensorimotor contingencies [5] is investigated utilizing sensory substitution. Furthermore, sensory substitution has contributed to the study of brain function, human cognition and rehabilitation. [6]

Physiology

When a person becomes blind or deaf they generally do not lose the ability to hear or see; they simply lose their ability to transmit the sensory signals from the periphery (retina for visions and cochlea for hearing) to brain. [7] Since the vision processing pathways are still intact, a person who has lost the ability to retrieve data from the retina can still see subjective images by using data gathered from other sensory modalities such as touch or audition. [8]

In a regular visual system, the data collected by the retina is converted into an electrical stimulus in the optic nerve and relayed to the brain, which re-creates the image and perceives it. Because it is the brain that is responsible for the final perception, sensory substitution is possible. During sensory substitution an intact sensory modality relays information to the visual perception areas of the brain so that the person can perceive sight. With sensory substitution, information gained from one sensory modality can reach brain structures physiologically related to other sensory modalities. Touch-to-visual sensory substitution transfers information from touch receptors to the visual cortex for interpretation and perception. For example, through fMRI, one can determine which parts of the brain are activated during sensory perception. In blind persons, it is seen that while they are only receiving tactile information, their visual cortex is also activated as they perceive sight objects. [9] Touch-to-touch sensory substitution is also possible, wherein information from touch receptors of one region of the body can be used to perceive touch in another region. For example, in one experiment by Bach-y-Rita, touch perception was able to be restored in a patient who lost peripheral sensation due to leprosy. [10]

Technological support

In order to achieve sensory substitution and stimulate the brain without intact sensory organs to relay the information, machines can be used to do the signal transduction, rather than the sensory organs. This brain–machine interface collects external signals and transforms them into electrical signals for the brain to interpret. Generally, a camera or a microphone is used to collect visual or auditory stimuli that are used to replace lost sight and hearing, respectively. The visual or auditory data collected from the sensors is transformed into tactile stimuli that are then relayed to the brain for visual and auditory perception. Crucially, this transformation sustains the sensorimotor contingency inherent to the respective sensory modality. This and all types of sensory substitution are only possible due to neuroplasticity. [10]

Brain plasticity

Brain plasticity refers to the brain's ability to adapt to a changing environment, for instance to the absence or deterioration of a sense. It is conceivable that cortical remapping or reorganization in response to the loss of one sense may be an evolutionary mechanism that allows people to adapt and compensate by using other senses better. Brain imaging studies have shown that upon visual impairments and blindness (especially in the first 12–16 years of life) the visual cortices undergo a huge functional reorganization such that they are activated by other sensory modalities. [11] [12] [13] Such cross-modal plasticity was also found through functional imaging of congenitally blind patients which showed a cross-modal recruitment of the occipital cortex during perceptual tasks such as Braille reading, tactile perception, tactual object recognition, sound localization, and sound discrimination. [6] This may suggest that blind people can use their occipital lobe, generally used for vision, to perceive objects through the use of other sensory modalities. This cross modal plasticity may explain the often described tendency of blind people to show enhanced ability in the other senses. [14] [15] [16] [17] [18]

Perception versus sensing

While considering the physiological aspects of sensory substitution, it is essential to distinguish between sensing and perceiving. The general question posed by this differentiation is: Are blind people seeing or perceiving to see by putting together different sensory data? While sensation comes in one modality – visual, auditory, tactile etc. – perception due to sensory substitution is not one modality but a result of cross-modal interactions. It is therefore concluded that while sensory substitution for vision induces visual-like perception in sighted individuals, it induces auditory or tactile perception in blind individuals. [19] In short, blind people perceive to see through touch and audition with sensory substitution. Through experiments with a Tactile-visual sensory substitution (TVSS) device developed by Bach-y-Rita subjects described the perceptual experience of the TVSS as particularly visual, such that objects were perceived as if located in the external space and not on the back or skin. Further studies using the TVSS showed that such perceptual changes were only possible when the participants could actively explore their environment with the TVSS. [20] [21] These results have been underpinned by many other studies testing different substitution systems with blind subjects such as vision-to-tactile substitution, [22] vision-to-auditory substitution [23] [24] and vision-to-vestibular substitution [25] Such results are also reported in sighted subjects, when blindfolded [26] [27] and deliver further support for the sensorimotor contingency theory.

Different applications

Applications are not restricted to disabled persons, but also include artistic presentations, games, and augmented reality. Some examples are substitution of visual stimuli to audio or tactile, and of audio stimuli to tactile. Some of the most popular are probably Paul Bach-y-Rita's Tactile Vision Sensory Substitution (TVSS), developed with Carter Collins at Smith-Kettlewell Institute and Peter Meijer's Seeing with Sound approach (The vOICe). Technical developments, such as miniaturization and electrical stimulation help the advance of sensory substitution devices.

In sensory substitution systems, we generally have sensors that collect the data from the external environment. This data is then relayed to a coupling system that interprets and transduces the information and then replays it to a stimulator. This stimulator ultimately stimulates a functioning sensory modality. [19] After training, people learn to use the information gained from this stimulation to experience a perception of the sensation they lack instead of the actually stimulated sensation. For example, a leprosy patient, whose perception of peripheral touch was restored, was equipped with a glove containing artificial contact sensors coupled to skin sensory receptors on the forehead (which was stimulated). After training and acclimation, the patient was able to experience data from the glove as if it was originating in the fingertips while ignoring the sensations in the forehead. [10]

Tactile systems

To understand tactile sensory substitution it is essential to understand some basic physiology of the tactile receptors of the skin. There are five basic types of tactile receptors: Pacinian corpuscle, Meissner's corpuscle, Ruffini endings, Merkel nerve endings, and free nerve endings. These receptors are mainly characterized by which type of stimuli best activates them, and by their rate of adaptation to sustained stimuli. [28] Because of the rapid adaptation of some of these receptors to sustained stimuli, those receptors require rapidly changing tactile stimulation systems in order to be optimally activated. [29] Among all these mechanoreceptors Pacinian corpuscle offers the highest sensitivity to high frequency vibration starting from a few tens of Hz to a few kHz with the help of its specialized mechanotransduction mechanism. [30] [31]

There have been two different types of stimulators: electrotactile or vibrotactile. Electrotactile stimulators use direct electrical stimulation of the nerve ending in the skin to initiate the action potentials; the sensation triggered, burn, itch, pain, pressure etc. depends on the stimulating voltage. Vibrotactile stimulators use pressure and the properties of the mechanoreceptors of the skin to initiate action potentials. There are advantages and disadvantages for both these stimulation systems. With the electrotactile stimulating systems a lot of factors affect the sensation triggered: stimulating voltage, current, waveform, electrode size, material, contact force, skin location, thickness and hydration. [29] Electrotactile stimulation may involve the direct stimulation of the nerves (percutaneous), or through the skin (transcutaneous). Percutaneous application causes additional distress to the patient, and is a major disadvantage of this approach. Furthermore, stimulation of the skin without insertion leads to the need for high voltage stimulation because of the high impedance of the dry skin, [29] unless the tongue is used as a receptor, which requires only about 3% as much voltage. [32] This latter technique is undergoing clinical trials for various applications, and been approved for assistance to the blind in the UK. [33] [34] Alternatively, the roof of the mouth has been proposed as another area where low currents can be felt. [35]

Electrostatic arrays are explored as human–computer interaction devices for touch screens. [36] These are based on a phenomenon called electrovibration, which allows microamperre-level currents to be felt as roughness on a surface. [37] [38]

Vibrotactile systems use the properties of mechanoreceptors in the skin so they have fewer parameters that need to be monitored as compared to electrotactile stimulation. However, vibrotactile stimulation systems need to account for the rapid adaptation of the tactile sense.

Another important aspect of tactile sensory substitution systems is the location of the tactile stimulation. Tactile receptors are abundant on the fingertips, face, and tongue while sparse on the back, legs and arms. It is essential to take into account the spatial resolution of the receptor as it has a major effect on the resolution of the sensory substitution. [29] A high resolution pin-arrayed display is able to present spatial information via tactile symbols, such as city maps [39] and obstacle maps. [40]

Below you can find some descriptions of current tactile substitution systems.

Tactile–visual

One of the earliest and most well known form of sensory substitution devices was Paul Bach-y-Rita's TVSS that converted the image from a video camera into a tactile image and coupled it to the tactile receptors on the back of his blind subject. [1] Recently, several new systems have been developed that interface the tactile image to tactile receptors on different areas of the body such as the on the chest, brow, fingertip, abdomen, and forehead. [7] The tactile image is produced by hundreds of activators placed on the person. The activators are solenoids of one millimeter diameter. In experiments, blind (or blindfolded) subjects equipped with the TVSS can learn to detect shapes and to orient themselves. In the case of simple geometric shapes, it took around 50 trials to achieve 100 percent correct recognition. To identify objects in different orientations requires several hours of learning.

A system using the tongue as the human–machine interface is most practical. The tongue–machine interface is both protected by the closed mouth and the saliva in the mouth provides a good electrolytic environment that ensures good electrode contact. [32] Results from a study by Bach-y-Rita et al. show that electrotactile stimulation of the tongue required 3% of the voltage required to stimulate the finger. [32] Also, since it is more practical to wear an orthodontic retainer holding the stimulation system than an apparatus strapped to other parts of the body, the tongue–machine interface is more popular among TVSS systems.

This tongue TVSS system works by delivering electrotactile stimuli to the dorsum of the tongue via a flexible electrode array placed in the mouth. This electrode array is connected to a Tongue Display Unit [TDU] via a ribbon cable passing out of the mouth. A video camera records a picture, transfers it to the TDU for conversion into a tactile image. The tactile image is then projected onto the tongue via the ribbon cable where the tongue's receptors pick up the signal. After training, subjects are able to associate certain types of stimuli to certain types of visual images. [7] [41] In this way, tactile sensation can be used for visual perception.

Sensory substitutions have also been successful with the emergence of wearable haptic actuators like vibrotactile motors, solenoids, peltier diodes, etc. At the Center for Cognitive Ubiquitous Computing at Arizona State University, researchers have developed technologies that enable people who are blind to perceive social situational information using wearable vibrotactile belts [42] (Haptic Belt) and gloves [43] [44] (VibroGlove). Both technologies use miniature cameras that are mounted on a pair of glasses worn by the user who is blind. The Haptic Belt provides vibrations that convey the direction and distance at which a person is standing in front of a user, while the VibroGlove uses spatio-temporal mapping of vibration patterns to convey facial expressions of the interaction partner. Alternatively, it has been shown that even very simple cues indicating the presence or absence of obstacles (through small vibration modules located at strategic places in the body) can be useful for navigation, gait stabilization and reduced anxiety when evolving in an unknown space. This approach, called the "Haptic Radar" [45] has been studied since 2005 by researchers at the University of Tokyo in collaboration with the University of Rio de Janeiro. [46] Similar products include the Eyeronman vest and belt, [47] [48] [49] and the forehead retina system. [50]

Tactile–auditory

Neuroscientist David Eagleman presented a new device for sound-to-touch hearing at TED in 2015; [51] his laboratory research then expanded into a company based in Palo Alto, California, called Neosensory. [52] Neosensory devices capture sound and turn them into high-dimensional patterns of touch on the skin. [53] [54]

Experiments by Schurmann et al. show that tactile senses can activate the human auditory cortex. Currently vibrotactile stimuli can be used to facilitate hearing in normal and hearing-impaired people. [55] To test for the auditory areas activated by touch, Schurmann et al. tested subjects while stimulating their fingers and palms with vibration bursts and their fingertips with tactile pressure. They found that tactile stimulation of the fingers lead to activation of the auditory belt area, which suggests that there is a relationship between audition and tactition. [55] Therefore, future research can be done to investigate the likelihood of a tactile–auditory sensory substitution system. One promising[ citation needed ] invention is the 'Sense organs synthesizer' [56] which aims at delivering a normal hearing range of nine octaves via 216 electrodes to sequential touch nerve zones, next to the spine.

Tactile–vestibular

Some people with balance disorders or adverse reactions to antibiotics develop bilateral vestibular damage (BVD). They experience difficulty maintaining posture, unstable gait, and oscillopsia. [57] Tyler et al. studied the restitution of postural control through a tactile for vestibular sensory substitution. Because BVD patients cannot integrate visual and tactile cues, they have a lot of difficulty standing. Using a head-mounted accelerometer and a brain–computer interface that employs electrotactile stimulation on the tongue, information about head-body orientation was relayed to the patient so that a new source of data is available to orient themselves and maintain good posture. [57]

Tactile–tactile to restore peripheral sensation

Touch to touch sensory substitution is where information from touch receptors of one region can be used to perceive touch in another. For example, in one experiment by Bach-y-Rita, the touch perception was restored in a patient who lost peripheral sensation from leprosy. [10] For example, this leprosy patient was equipped with a glove containing artificial contact sensors coupled to skin sensory receptors on the forehead (which was stimulated). After training and acclimation, the patient was able to experience data from the glove as if it was originating in the fingertips while ignoring the sensations in the forehead. [10] After two days of training one of the leprosy subjects reported "the wonderful sensation of touching his wife, which he had been unable to experience for 20 years." [58]

Tactile feedback system for prosthetic limbs

The development of new technologies has now made it plausible to provide patients with prosthetic arms with tactile and kinesthetic sensibilities. [59] While this is not purely a sensory substitution system, it uses the same principles to restore perception of senses. Some tactile feedback methods of restoring a perception of touch to amputees would be direct or micro stimulation of the tactile nerve afferents. [59]

Other applications of sensory substitution systems can be seen in function robotic prostheses for patients with high level quadriplegia. These robotic arms have several mechanisms of slip detection, vibration and texture detection that they relay to the patient through feedback. [58] After more research and development, the information from these arms can be used by patients to perceive that they are holding and manipulating objects while their robotic arm actually accomplishes the task.

Auditory systems

Auditory sensory substitution systems like the tactile sensory substitution systems aim to use one sensory modality to compensate for the lack of another in order to gain a perception of one that is lacking. With auditory sensory substitution, visual or tactile sensors detect and store information about the external environment. This information is then transformed by interfaces into sound. Most systems are auditory-vision substitutions aimed at using the sense of hearing to convey visual information to the blind.

The vOICe Auditory Display

"The vOICe" converts live camera views from a video camera into soundscapes, patterns of scores of different tones at different volumes and pitches emitted simultaneously. [60] The technology of the vOICe was invented in the 1990s by Peter Meijer and uses general video to audio mapping by associating height to pitch and brightness with loudness in a left-to-right scan of any video frame. [7]

EyeMusic

The EyeMusic user wears a miniature camera connected to a small computer (or smartphone) and stereo headphones. The images are converted into "soundscapes". The high locations on the image are projected as high-pitched musical notes on a pentatonic scale, and low vertical locations as low-pitched musical notes.

The EyeMusic conveys color information by using different musical instruments for each of the following five colors: white, blue, red, green, yellow. The EyeMusic employs an intermediate resolution of 30×50 pixels. [61] [62] [63]

LibreAudioView

This project, presented in 2015, [64] proposes a new versatile mobile device and a sonification method specifically designed to the pedestrian locomotion of the visually impaired. It sonifies in real-time spatial information from a video stream acquired at a standard frame rate. The device is composed of a miniature camera integrated into a glasses frame which is connected to a battery-powered minicomputer worn around the neck with a strap. The audio signal is transmitted to the user via running headphones. This system has two operating modes. With the first mode, when the user is static, only the edges of the moving objects are sonified. With the second mode, when the user is moving, the edges of both static and moving objects are sonified. Thus, the video stream is simplified by extracting only the edges of objects that can become dangerous obstacles. The system enables the localization of moving objects, the estimation of trajectories, and the detection of approaching objects.

PSVA

Another successful visual-to-auditory sensory substitution device is the Prosthesis Substituting Vision for Audition (PSVA). [65] This system utilizes a head-mounted TV camera that allows real-time, online translation of visual patterns into sound. While the patient moves around, the device captures visual frames at a high frequency and generates the corresponding complex sounds that allow recognition. [7] Visual stimuli are transduced into auditory stimuli with the use of a system that uses pixel to frequency relationship and couples a rough model of the human retina with an inverse model of the cochlea. [65]

The Vibe

The sound produced by this software is a mixture of sinusoidal sounds produced by virtual "sources", corresponding each to a "receptive field" in the image. Each receptive field is a set of localized pixels. The sound's amplitude is determined by the mean luminosity of the pixels of the corresponding receptive field. The frequency and the inter-aural disparity are determined by the center of gravity of the co-ordinates of the receptive field's pixels in the image (see "There is something out there: distal attribution in sensory substitution, twenty years later"; Auvray M., Hanneton S., Lenay C., O'Regan K. Journal of Integrative Neuroscience 4 (2005) 505–21). The Vibe is an Open Source project hosted by SourceForge.

Other systems

Other approaches to the substitution of hearing for vision use binaural directional cues, much as natural human echolocation does. An example of the latter approach is the "SeeHear" chip from Caltech. [66]

Other visual-auditory substitution devices deviate from the vOICe's greyscale mapping of images. Zach Capalbo's Kromophone uses a basic color spectrum correlating to different sounds and timbres to give users perceptual information beyond the vOICe's capabilities. [67]

Nervous system implants

By means of stimulating electrodes implanted into the human nervous system, it is possible to apply current pulses to be learned and reliably recognized by the recipient. It has been shown successfully in experimentation, by Kevin Warwick, that signals can be employed from force/touch indicators on a robot hand as a means of communication. [68]

Terminology

It has been argued that the term "substitution" is misleading, as it is merely an "addition" or "supplementation" not a substitution of a sensory modality. [69]

Sensory augmentation

Building upon the research conducted on sensory substitution, investigations into the possibility of augmenting the body's sensory apparatus are now beginning. The intention is to extend the body's ability to sense aspects of the environment that are not normally perceivable by the body in its natural state. Moreover, such new informations about the environment could be used not to directly replace a sensory organ but to offer a sensory information usually perceived via another, potentially harmed, sensory modality. Thus, also sensory augmentation is widely used for rehabilitation purposes as well as for investigating perceptive and cognitive neuroscience

Active work in this direction is being conducted by, among others, the e-sense project [70] of the Open University and Edinburgh University, the feelSpace project of the University of Osnabrück, and the hearSpace project at University of Paris.

The findings of research into sensory augmentation (as well as sensory substitution in general) that investigate the emergence of perceptual experience (qualia) from the activity of neurons have implications for the understanding of consciousness. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Perception</span> Interpretation of sensory information

Perception is the organization, identification, and interpretation of sensory information in order to represent and understand the presented information or environment. All perception involves signals that go through the nervous system, which in turn result from physical or chemical stimulation of the sensory system. Vision involves light striking the retina of the eye; smell is mediated by odor molecules; and hearing involves pressure waves.

An illusion is a distortion of the senses, which can reveal how the mind normally organizes and interprets sensory stimulation. Although illusions distort the human perception of reality, they are generally shared by most people.

<span class="mw-page-title-main">Sensory nervous system</span> Part of the nervous system responsible for processing sensory information

The sensory nervous system is a part of the nervous system responsible for processing sensory information. A sensory system consists of sensory neurons, neural pathways, and parts of the brain involved in sensory perception and interoception. Commonly recognized sensory systems are those for vision, hearing, touch, taste, smell, balance and visceral sensation. Sense organs are transducers that convert data from the outer physical world to the realm of the mind where people interpret the information, creating their perception of the world around them.

In physiology, transduction is the translation of arriving stimulus into an action potential by a sensory receptor. It begins when stimulus changes the membrane potential of a receptor cell.

Stimulus modality, also called sensory modality, is one aspect of a stimulus or what is perceived after a stimulus. For example, the temperature modality is registered after heat or cold stimulate a receptor. Some sensory modalities include: light, sound, temperature, taste, pressure, and smell. The type and location of the sensory receptor activated by the stimulus plays the primary role in coding the sensation. All sensory modalities work together to heighten stimuli sensation when necessary.

<span class="mw-page-title-main">Sensory neuron</span> Nerve cell that converts environmental stimuli into corresponding internal stimuli

Sensory neurons, also known as afferent neurons, are neurons in the nervous system, that convert a specific type of stimulus, via their receptors, into action potentials or graded receptor potentials. This process is called sensory transduction. The cell bodies of the sensory neurons are located in the dorsal ganglia of the spinal cord.

Multisensory integration, also known as multimodal integration, is the study of how information from the different sensory modalities may be integrated by the nervous system. A coherent representation of objects combining modalities enables animals to have meaningful perceptual experiences. Indeed, multisensory integration is central to adaptive behavior because it allows animals to perceive a world of coherent perceptual entities. Multisensory integration also deals with how different sensory modalities interact with one another and alter each other's processing.

<span class="mw-page-title-main">Associative visual agnosia</span> Medical condition

Associative visual agnosia is a form of visual agnosia. It is an impairment in recognition or assigning meaning to a stimulus that is accurately perceived and not associated with a generalized deficit in intelligence, memory, language or attention. The disorder appears to be very uncommon in a "pure" or uncomplicated form and is usually accompanied by other complex neuropsychological problems due to the nature of the etiology. Affected individuals can accurately distinguish the object, as demonstrated by the ability to draw a picture of it or categorize accurately, yet they are unable to identify the object, its features or its functions.

Sensory processing is the process that organizes and distinguishes sensation from one's own body and the environment, thus making it possible to use the body effectively within the environment. Specifically, it deals with how the brain processes multiple sensory modality inputs, such as proprioception, vision, auditory system, tactile, olfactory, vestibular system, interoception, and taste into usable functional outputs.

A sensory cue is a statistic or signal that can be extracted from the sensory input by a perceiver, that indicates the state of some property of the world that the perceiver is interested in perceiving.

Tactile discrimination is the ability to differentiate information through the sense of touch. The somatosensory system is the nervous system pathway that is responsible for this essential survival ability used in adaptation. There are various types of tactile discrimination. One of the most well known and most researched is two-point discrimination, the ability to differentiate between two different tactile stimuli which are relatively close together. Other types of discrimination like graphesthesia and spatial discrimination also exist but are not as extensively researched. Tactile discrimination is something that can be stronger or weaker in different people and two major conditions, chronic pain and blindness, can affect it greatly. Blindness increases tactile discrimination abilities which is extremely helpful for tasks like reading braille. In contrast, chronic pain conditions, like arthritis, decrease a person's tactile discrimination. One other major application of tactile discrimination is in new prosthetics and robotics which attempt to mimic the abilities of the human hand. In this case tactile sensors function similarly to mechanoreceptors in a human hand to differentiate tactile stimuli.

Activity-dependent plasticity is a form of functional and structural neuroplasticity that arises from the use of cognitive functions and personal experience; hence, it is the biological basis for learning and the formation of new memories. Activity-dependent plasticity is a form of neuroplasticity that arises from intrinsic or endogenous activity, as opposed to forms of neuroplasticity that arise from extrinsic or exogenous factors, such as electrical brain stimulation- or drug-induced neuroplasticity. The brain's ability to remodel itself forms the basis of the brain's capacity to retain memories, improve motor function, and enhance comprehension and speech amongst other things. It is this trait to retain and form memories that is associated with neural plasticity and therefore many of the functions individuals perform on a daily basis. This plasticity occurs as a result of changes in gene expression which are triggered by signaling cascades that are activated by various signaling molecules during increased neuronal activity.

<span class="mw-page-title-main">Somatosensory system</span> Nerve system for sensing touch, temperature, body position, and pain

In physiology, the somatosensory system is the network of neural structures in the brain and body that produce the perception of touch, as well as temperature (thermoception), body position (proprioception), and pain. It is a subset of the sensory nervous system, which also represents visual, auditory, olfactory, and gustatory stimuli.

Extinction is a neurological disorder that impairs the ability to perceive multiple stimuli of the same type simultaneously. Extinction is usually caused by damage resulting in lesions on one side of the brain. Those who are affected by extinction have a lack of awareness in the contralesional side of space and a loss of exploratory search and other actions normally directed toward that side.

A sense is a biological system used by an organism for sensation, the process of gathering information about the world through the detection of stimuli. Although in some cultures five human senses were traditionally identified as such, many more are now recognized. Senses used by non-human organisms are even greater in variety and number. During sensation, sense organs collect various stimuli for transduction, meaning transformation into a form that can be understood by the brain. Sensation and perception are fundamental to nearly every aspect of an organism's cognition, behavior and thought.

Paul Bach-y-Rita was an American neuroscientist whose most notable work was in the field of neuroplasticity. Bach-y-Rita was one of the first to seriously study the idea of neuroplasticity, and to introduce sensory substitution as a tool to treat patients with neurological disorders.

<span class="mw-page-title-main">Cross modal plasticity</span> Reorganization of neurons in the brain to integrate the function of two or more sensory systems

Cross modal plasticity is the adaptive reorganization of neurons to integrate the function of two or more sensory systems. Cross modal plasticity is a type of neuroplasticity and often occurs after sensory deprivation due to disease or brain damage. The reorganization of the neural network is greatest following long-term sensory deprivation, such as congenital blindness or pre-lingual deafness. In these instances, cross modal plasticity can strengthen other sensory systems to compensate for the lack of vision or hearing. This strengthening is due to new connections that are formed to brain cortices that no longer receive sensory input.

Many types of sense loss occur due to a dysfunctional sensation process, whether it be ineffective receptors, nerve damage, or cerebral impairment. Unlike agnosia, these impairments are due to damages prior to the perception process.

Haptic memory is the form of sensory memory specific to touch stimuli. Haptic memory is used regularly when assessing the necessary forces for gripping and interacting with familiar objects. It may also influence one's interactions with novel objects of an apparently similar size and density. Similar to visual iconic memory, traces of haptically acquired information are short lived and prone to decay after approximately two seconds. Haptic memory is best for stimuli applied to areas of the skin that are more sensitive to touch. Haptics involves at least two subsystems; cutaneous, or everything skin related, and kinesthetic, or joint angle and the relative location of body. Haptics generally involves active, manual examination and is quite capable of processing physical traits of objects and surfaces.

<span class="mw-page-title-main">CyborgNest</span> Human enhancement company

CyborgNest Ltd was a wearable start-up company headquartered in London, United Kingdom. The start-up created a wearable which used haptic technology (vibrations) to convey information to the wearer called NorthSense. The device was released in 2017 to connect wearers to the Earth's magnetic field.

References

  1. 1 2 Bach-y-Rita P, Collins CC, Saunders F, White B, Scadden L (1969). "Vision substitution by tactile the image projection". Nature. 221 (5184): 963–964. Bibcode:1969Natur.221..963B. doi:10.1038/221963a0. PMID   5818337. S2CID   4179427.
  2. Nicholas Humphrey (1999). A History of the Mind: Evolution and the Birth of Consciousness. Springer. ISBN   978-0-387-98719-4.
  3. Scheff, Chaim-Meyer (1 January 1986). "Experimental Model for the Study of Changes in the Organization of Human Sensory Information Processing Through the Design and Testing of Non-invasive Prosthetic Devices for Sensory Impaired People". SIGCAPH Comput. Phys. Handicap. (36): 3–10. doi:10.1145/15711.15713. S2CID   11924232.
  4. Bach-y-Rita P (2004). "Tactile sensory substitution studies". Annals of the New York Academy of Sciences. 1013 (1): 83–91. Bibcode:2004NYASA1013...83B. doi:10.1196/annals.1305.006. PMID   15194608. S2CID   44624575.
  5. O'Regan, John Kevin; Noë, Alva (2001). "A sensorimotor account of vision and visual consciousness". Behavioral and Brain Sciences. 24 (5): 939–1031. doi:10.1017/S0140525X01000115. PMID   12239892.
  6. 1 2 Renier L, De Volder AG (2005). "Cognitive and brain mechanisms in sensory substitution of vision: a contribution to the study of human perception". Journal of Integrative Neuroscience. 4 (4): 489–503. doi:10.1142/S0219635205000999. PMID   16385643.
  7. 1 2 3 4 5 Bach-y-Rita P, Kercel SW (2003). "Sensory substitution and the human–machine interface" (PDF). Trends in Cognitive Sciences. 7 (12): 541–546. CiteSeerX   10.1.1.159.9777 . doi:10.1016/j.tics.2003.10.013. PMID   14643370. S2CID   2466391.
  8. 1 2 O'Regan, JK; Noe, A. (2001). "A sensorimotor account of vision and visual consciousness". Behavioral and Brain Sciences. 24 (5): 939–973. doi:10.1017/s0140525x01000115. PMID   12239892. S2CID   22606536.
  9. Bach-y-Rita P. Brain Mechanisms in Sensory Substitution, Academic Press New York:1972.
  10. 1 2 3 4 5 Bach-y-Rita P. Nonsynaptic Diffusion Neurotransmission and Late Brain Reorganization, Demos-Vermande, New York :1995.
  11. Collignon, O.; Lassonde, M.; Lepore, F.; Bastien, D.; Veraart, C. (2007). "Functional cerebral reorganization for auditory spatial processing and auditory substitution of vision in early blind subjects". Cerebral Cortex. 17 (2): 457–465. doi:10.1093/cercor/bhj162. PMID   16581983.
  12. Sadato, N.; Okada, T.; Honda, M.; Yonekura, Y. (2002). "Critical period for cross-modal plasticity in blind humans: a functional MRI study". NeuroImage. 16 (2): 389–400. doi:10.1006/nimg.2002.1111. PMID   12030824. S2CID   1927987.
  13. Cohen, L.G.; Sadato, N.; Celnik, P.; Ishii, K.; Hallett, M. (1999). "Period of susceptibility for cross‐modal plasticity in the blind". Annals of Neurology. 45 (4): 451–460. doi:10.1002/1531-8249(199904)45:4<451::AID-ANA6>3.0.CO;2-B. PMID   10211469. S2CID   22588834.
  14. Van Boven, R. W.; Hamilton, R. H.; Kauffman, T.; Keenan, J. P.; Pascual-Leone, A. (2000-06-27). "Tactile spatial resolution in blind braille readers". Neurology. 54 (12): 2230–2236. doi:10.1212/wnl.54.12.2230. ISSN   0028-3878. PMID   10881245. S2CID   12053536.
  15. Goldreich, Daniel; Kanics, Ingrid M. (2003-04-15). "Tactile acuity is enhanced in blindness". The Journal of Neuroscience. 23 (8): 3439–3445. doi:10.1523/JNEUROSCI.23-08-03439.2003. ISSN   1529-2401. PMC   6742312 . PMID   12716952.
  16. Goldreich, Daniel; Kanics, Ingrid M. (November 2006). "Performance of blind and sighted humans on a tactile grating detection task". Perception & Psychophysics. 68 (8): 1363–1371. doi: 10.3758/bf03193735 . ISSN   0031-5117. PMID   17378422.
  17. Wong, Michael; Gnanakumaran, Vishi; Goldreich, Daniel (2011-05-11). "Tactile Spatial Acuity Enhancement in Blindness: Evidence for Experience-Dependent Mechanisms". Journal of Neuroscience. 31 (19): 7028–7037. doi:10.1523/jneurosci.6461-10.2011. PMC   6703211 . PMID   21562264.
  18. Bhattacharjee, Arindam; Ye, Amanda J.; Lisak, Joy A.; Vargas, Maria G.; Goldreich, Daniel (2010-10-27). "Vibrotactile Masking Experiments Reveal Accelerated Somatosensory Processing in Congenitally Blind Braille Readers". Journal of Neuroscience. 30 (43): 14288–14298. doi:10.1523/jneurosci.1447-10.2010. PMC   3449316 . PMID   20980584.
  19. 1 2 Poirier C, De Volder AG, Scheiber C (2007). "What neuroimaging tells us about sensory substitution". Neuroscience & Biobehavioral Reviews. 31 (7): 1064–1070. doi:10.1016/j.neubiorev.2007.05.010. PMID   17688948. S2CID   45083182.
  20. Bach-Y-Rita, P.; Kercel, S. W. (2003). "Sensory substitution and the human–machine interface". Trends in Cognitive Sciences. 7 (12): 541–546. doi:10.1016/j.tics.2003.10.013. PMID   14643370. S2CID   2466391.
  21. Bach-Y-Rita, P. (2004). "Tactile sensory substitution studies". Annals of the New York Academy of Sciences. 1013 (1): 83–91. Bibcode:2004NYASA1013...83B. doi:10.1196/annals.1305.006. PMID   15194608. S2CID   44624575.
  22. Sampaio, E.; Maris, S.; Bach-Y-Rita, P. (2001). "). Brain plasticity: "Visual' acuity of blind persons via the tongue". Brain Research. 908 (2): 204–207. doi:10.1016/S0006-8993(01)02667-1. PMID   11454331. S2CID   17323161.
  23. Abboud, S.; Hanassy, S.; Levy-Tzedek, S.; Maidenbaum, S.; Amedi, A. (2014). "EyeMusic: Introducing a visual colorful experience for the blind using auditory sensory substitution". Restor Neurol Neurosci. 32 (2): 247–257. doi: 10.3233/RNN-130338 . PMID   24398719.
  24. Levy-Tzedek, S.; Hanassy, S.; Abboud, S.; Maidenbaum, S.; Amedi, A. (2012). "Fast, accurate reaching movements with a visual-to-auditory sensory substitution device". Restor Neurol Neurosci. 30 (4): 313–323. doi: 10.3233/RNN-2012-110219 . PMID   22596353.
  25. Tyler, M.; Danilo, Y.; Bach-Y-Rita, P. (2003). "Closing an open-loop control system: vestibular substitution through the tongue". Journal of Integrative Neuroscience. 2 (3): 159–164. doi:10.1142/S0219635203000263. PMID   15011268. S2CID   14565593.
  26. Schumann, F.; O'Regan, K. (2017). "Sensory augmentation: integration of an auditory compass signal into human perception of space". Scientific Reports. 7 (1): 42197. Bibcode:2017NatSR...742197S. doi:10.1038/srep42197. PMC   5307328 . PMID   28195187.
  27. König, S.U.; Schumann, F.; Keyser, J.; Goeke, C.; Krause, C.; Wache, S. (2016). "). Learning New Sensorimotor Contingencies: Effects of Long-Term Use of Sensory Augmentation on the Brain and Conscious Perception". PLOS ONE. 11 (12): e0166647. Bibcode:2016PLoSO..1166647K. doi: 10.1371/journal.pone.0166647 . PMC   5154504 . PMID   27959914.
  28. Vallbo AB, Johansson RS (1984). "Properties of cutaneous mechanoreceptors in the human hand related to touch sensation". Human Neurobiology. 3 (1): 3–14. PMID   6330008.
  29. 1 2 3 4 Kaczmarek KA, Webster JG, Bach-y-Rita P, Tompkins WJ (1991). "Electrotactile and vibrotactile displays for sensory substitution systems". IEEE Transactions on Biomedical Engineering. 38 (1): 1–16. doi:10.1109/10.68204. PMID   2026426. S2CID   23047344.
  30. Biswas, Abhijit; Manivannan, M.; Srinivasan, Mandyam A. (2015). "Vibrotactile Sensitivity Threshold: Nonlinear Stochastic Mechanotransduction Model of the Pacinian Corpuscle". IEEE Transactions on Haptics. 8 (1): 102–113. doi:10.1109/TOH.2014.2369422. PMID   25398183. S2CID   15326972.
  31. Biswas, Abhijit; Manivannan, M.; Srinivasan, Mandyam A. (2015). "Multiscale Layered Biomechanical Model of the Pacinian Corpuscle". IEEE Transactions on Haptics. 8 (1): 31–42. doi:10.1109/TOH.2014.2369416. PMID   25398182. S2CID   24658742.
  32. 1 2 3 Bach-y-Rita P, Kaczmarek KA, Tyler ME, Garcia-Lara J (1998). "Form perception with a 49-point electrotactile stimulus array on the tongue: a technical note" (PDF). J Rehabil Res Dev. 35 (4): 427–30. PMID   10220221. See also Brainport
  33. Layton, Julia (2006-07-17). "How BrainPort Works". HowStuffWorks. Retrieved July 21, 2016.
  34. "Wicab Announces European Market Approval for its Non-Invasive Assistive Aid for the Blind" (PDF) (Press Release). Wicab, Inc. Archived from the original (PDF) on May 7, 2013.
  35. Hui Tang; D. J. Beebe (2003). "Design and microfabrication of a flexible oral electrotactile display". Journal of Microelectromechanical Systems. 12 (1): 29–36. doi:10.1109/JMEMS.2002.807478.
  36. Deyle, Travis (August 11, 2010). "Electrotactile Arrays for Texture and Pressure Feedback During Robotic Teleoperation". Hizook. Retrieved July 21, 2016.
  37. Grimnes S (1983). "Electrovibration, cutaneous sensation of microampere current" (PDF). Acta Physiologica Scandinavica. 118 (2): 19–25. doi:10.1111/j.1748-1716.1983.tb07235.x. PMID   6624501.
  38. Kurt A. Kaczmarek; Krishnakant Nammi; Abhishek K. Agarwal; Mitchell E. Tyler; Steven J. Haase; David J. Beebec (2006). "Polarity effect in electrovibration for tactile display". IEEE Transactions on Biomedical Engineering. 53 (10): 2047–2054. doi:10.1109/TBME.2006.881804. PMC   2582732 . PMID   17019869.
  39. Zeng; et al. (2015). "Interactive Audio-haptic Map Explorer on a Tactile Display". Interacting with Computers. 27 (4): 413–429. doi:10.1093/iwc/iwu006.
  40. Zeng; et al. (2012). "Exploration and avoidance of surrounding obstacles for the visually impaired". Proceedings of the 14th international ACM SIGACCESS conference on Computers and accessibility - ASSETS '12. pp. 111–118. doi:10.1145/2384916.2384936. ISBN   9781450313216. S2CID   18623028.
  41. Bach-y-Rita P, and Kaczmarek KA. (2002). Tongue placed tactile output device. US Patent 6,430,450.
  42. T. McDaniel; S. Krishna; V. Balasubramanian; D. Colbry; S. Panchanathan (2008). Using a haptic belt to convey non-verbal communication cues during social interactions to individuals who are blind. IEEE International Workshop on Haptic, Audio and Visual Environments and Games, 2008. HAVE 2008. pp. 13–18. doi:10.1109/HAVE.2008.4685291.
  43. Paul, Sathish Kumar; Rekha, V.; Sivarasu, Sudesh (2012). "Tactile Sensing Fabrics for Detecting Impairments in Leprosy Patients". Appropriate Healthcare Technologies for Developing Countries – AHT2012. The 7th International Conference – World Health and Wellbeing. London, UK: IEEE. doi:10.1049/cp.2012.1461.
  44. S. Krishna; S. Bala; T. McDaniel; S. McGuire; S. Panchanathan (2010). VibroGlove: an assistive technology aid for conveying facial expressions (PDF). Proceedings of the 28th of the international conference extended abstracts on Human factors in computing systems. Atlanta, Georgia, USA: ACM. pp. 3637–3642. doi:10.1145/1753846.1754031.
  45. "The Haptic Radar / Extended Skin Project". Ishikawa Watanabe Laboratory.
  46. A. Cassinelli; E. Sampaio; S.B. Joffily; H.R.S. Lima; B.P.G.R. Gusmão (2014). "Do blind people move more confidently with the Tactile Radar?" (PDF). Technology and Disability. 26 (2–3): 161–170. doi:10.3233/TAD-140414. Archived from the original (PDF) on 2017-03-14. Retrieved 2016-07-21.
  47. "Seeing-Eye Vest? Vibrating Clothing Helps Blind Navigate". Https. 14 November 2014. Retrieved June 21, 2019.
  48. "Vibrating vest could help the blind avoid obstacles - CBS News". Https. 13 June 2014. Retrieved June 21, 2019.
  49. "Vibrating Clothes Could Help Blind People Navigate - Business Insider". Https. Retrieved June 21, 2019.
  50. "Forehead Retina System". Https. 2006-08-08. Retrieved June 21, 2019.
  51. Eagleman, David (2015). Can we create new senses for humans? TED talks.
  52. Neosensory, Inc
  53. Could This Futuristic Vest Give Us a Sixth Sense?, Smithsonian Magazine, Apr 2018.
  54. Meet the man who wants to give humans a sixth sense, The Telegraph, Jan 2019.
  55. 1 2 Schurmann M, Caetano G, Hlushchuk Y, Jousmaki V, Hari R (2006). "Touch activates human auditory cortex". NeuroImage. 30 (4): 1325–1331. doi:10.1016/j.neuroimage.2005.11.020. PMID   16488157. S2CID   22045169.
  56. "Sense organs synthesizer United States Patent Application 20020173823" (PDF).
  57. 1 2 Tyler M, Danilov Y, Bach-y-Rita P (2003). "Closing an open-loop control system: vestibular substitution through the tongue". Journal of Integrative Neuroscience. 2 (2): 159–164. doi:10.1142/S0219635203000263. PMID   15011268. S2CID   14565593.
  58. 1 2 Bach-y-Rita P (1999). "Theoretical aspects of sensory substitution and of neurotransmission-related reorganization in spinal cord injury". Spinal Cord. 37 (7): 465–474. doi: 10.1038/sj.sc.3100873 . PMID   10438112.
  59. 1 2 Riso RR (1999). "Strategies for providing upper extremity amputees with tactile and hand position feedback – moving closer to the bionic arm" (PDF). Technology and Health Care. 7 (6): 401–409. doi:10.3233/THC-1999-7604. PMID   10665673. Archived from the original (PDF) on 2010-06-27. Retrieved 2016-07-21.
  60. Meijer PBL (1992). "An Experimental System for Auditory Image Representations". IEEE Transactions on Biomedical Engineering. 39 (2): 112–121. doi:10.1109/10.121642. PMID   1612614. S2CID   34811735.
  61. Levy-Tzedek, Shelly; Hanassy S.; Abboud S.; Maidenbaum S.; Amedi A. (January 1, 2012). "Fast, accurate reaching movements with a visual-to-auditory sensory substitution device" (PDF). Restorative Neurology and Neuroscience. 30 (4): 313–323. doi: 10.3233/RNN-2012-110219 . PMID   22596353.
  62. Abboud, Sami; Hanassy S; Levy-Tzedek S; Maidenbaum S; Amedi A. (2014). "EyeMusic: Introducing a "visual" colorful experience for the blind using auditory sensory substitution" (PDF). Restorative Neurology and Neuroscience. 32 (2): 247–257. doi: 10.3233/RNN-130338 . PMID   24398719.
  63. Maidenbaum, Shachar; Abboud S.; Amedi A. (April 2014). "Sensory substitution: Closing the gap between basic research and widespread practical visual rehabilitation" (PDF). Neuroscience & Biobehavioral Reviews. 41: 3–15. doi: 10.1016/j.neubiorev.2013.11.007 . PMID   24275274.
  64. Ambard, Maxime; Benezeth Y.; Pfister P. (2015). "Mobile video-to-audio transducer and motion detection for sensory substitution". Frontiers in ICT. 2. doi: 10.3389/fict.2015.00020 .
  65. 1 2 Capelle C, Trullemans C, Arno P, Veraart C (1998). "A real-time experimental prototype for enhancement of Vision Rehabilitation–vision rehabilitation using auditory substitution". IEEE Transactions on Biomedical Engineering. 45 (10): 1279–1293. doi:10.1109/10.720206. PMID   9775542. S2CID   7865760.
  66. Nielson L, Mahowald M, Mead C (1989). "SeeHear," in Analog VLSI and Neural Systems, by C. Mead, Reading: Addison-Wesley, chapter 13, 207–227.
  67. [ dead link ]
  68. Warwick K, Gasson M, Hutt B, Goodhew I, Kyberd P, Schulzrinne H, Wu X (2004). "Thought communication and control: A first step using radiotelegraphy". IEE Proceedings - Communications. 151 (3): 185–189. doi:10.1049/ip-com:20040409. S2CID   15804806.
  69. Lenay C, Gapenne O, Hanneton S, Marque C, Geouelle C (2003). "Sensory Substitution: limits and perspectives". Touching for Knowing, Cognitive psychology of haptic manual perception (PDF). pp. 275–292.
  70. "Home - e-sense project". Archived from the original on 2014-08-10. Retrieved 2014-08-06.