Sequential infiltration synthesis (SIS) is a technique derived from atomic layer deposition (ALD) in which a polymer is infused with inorganic material using sequential, self-limiting exposures to gaseous precursors, enabling precise manipulation over the composition, structure, and properties. The technique has applications in fields such as nanotechnology, materials science, and electronics, where precise material engineering is required. [1] [2] [3] [4] [5] [6] [7]
This synthesis uses metal-organic vapor-phase precursors and co-reactants that dissolve and diffuse into polymers. These precursors interact with the functional groups of the polymers through reversible complex formation or irreversible chemical reactions, resulting in composite materials that can exhibit nano-structured properties. The metal-organic precursor (A) and co-reactant vapor (B) are supplied in an alternating ABAB sequence. Following SIS, the organic phase may be removed thermally or chemically to leave only the inorganic components behind. This approach facilitates the fabrication of materials with controlled properties such as composition, stylometric, porosity, conductivity, refractive index, and chemical functionality on the nano-scale. [8]
SIS has been utilized in fields, including electronics, energy storage, AI, and catalysis, for its ability to modify material properties. SIS is sometimes referred to as "multiple pulsed vapor-phase infiltration" (MPI), [9] "vapor phase infiltration" (VPI) [10] or "sequential vapor infiltration" (SVI). [11]
SIS involves the 3D distribution of functional groups in polymers, while its predecessor, ALD, is associated with the two-dimensional distribution of reactive sites on solid surfaces. In SIS, the partial pressures and exposure times for the precursor pulse are typically larger compared to ALD to ensure adequate infiltration of the precursor into the three-dimensional polymer volume through dissolution and diffusion. [1] The process relies on the diffusive transport of precursors within polymers, with the resulting distribution influenced by time, pressure, temperature, polymer chemistry, and micro-structure. [1]
The diffusion of precursors below the surfaces of polymers during ALD was observed in 2005 by the Steven M. George group when they observed that polymers could uptake trimethylaluminium (TMA) via absorption within their free volume. [12] In the study, the interactions between the ALD precursors and the polymer functional groups were not recognized, and the diffusion of precursors into polymer films was considered a problem. Hence, the diffusion and reactions of ALD precursors into polymer films were considered challenges to address rather than opportunities. However, potential benefits of these phenomena were demonstrated by Knez and coworkers in a 2009 report describing the increased toughness of spider silk following vapor-phase infiltration. [9]
Sequential infiltration synthesis (SIS) was developed by Argonne National Laboratory scientists Jeffrey Elam and Seth Darling in 2010 to synthesize nanoscopic materials starting from block copolymer templates. [13] A patent application was filed in 2011 and the first patent was issued in 2016. [14] SIS involves vapour diffusing into an existing polymer and chemically or physically binding to it. This results in the growth and formation of inorganic structures by selective nucleation throughout the bulk polymer.
With SIS, the shapes of various inorganic materials can be tailored by applying their precursor chemistries to patterned or nano-structured organic polymers, such as block copolymers. [15] SIS was developed to intentionally enable the infusion of inorganic materials such as metal oxides and metals within polymers to yield hybrid materials with enhanced properties. Hybrid materials created via SIS can further be subjected to thermal annealing steps to remove the polymer constituents entirely to derive purely inorganic materials that maintain the structure of the original polymer morphology, including mesoporosity. [16]
Although the early research in SIS focused on a small number of inorganic materials such as Al2O3, TiO2, and ZnO, the technology diversified over the next decade and came to include a wide variety of both inorganic materials and organic polymers, as detailed in reviews. [1] [2] [3] [4] [5] [6] [7]
SIS is based on the consecutive introduction of different precursors into a polymer, taking advantage of the material's porosity on the molecular scale. This allows the precursors to diffuse into the material and react with specific functional groups located along the polymer backbone or pendant group. [17] [18] Through the selection and combination of the precursors, a rich variety of materials can be synthesized, each of which can endow unique properties to the material. [19] [20] [21]
The process of SIS involves various key steps, the first of which is materials selection. A suitable substrate material, such as a polymer film, and precursors, typically molecules that can react with the substrate's functional groups, are used for the infiltration synthesis. The pairing of polymer chemistry and precursor species is vital for acquiring the desired fictionalization and modification. [3]
The substrate is placed in a reactor with an inert atmosphere (typically an inert gas or vacuum). The first precursor vapor (e.g., trimethylaluminum, TMA) is introduced at a sufficiently high vapor pressure and duration such that the precursor molecules diffuse into the substrate. [1] Thus the precursor infiltrates the material and then reacts with the interior functional groups.
After a suitable diffusion/reaction time, the reactor is purged with inert gas or evacuated to remove reaction byproducts and UN-reacted precursors. A second vapor-phase species, often a co-reactant, such as H2O, is introduced. Again, the precursor partial pressure and exposure time are selected to allow sufficient time and thermodynamic driving force for diffusion into the polymer and reaction with the functional groups left by the first precursor exposure. [1] The second precursor is then purged or evacuated to complete the first SIS cycle.
The second precursor may also create new functional groups for reaction with the first precursor for subsequent SIS cycles. Sequential infiltration steps can then be repeated using the same or different precursor species until the desired modifications are achieved. When the desired infiltrations are achieved, the modified material can undergo further post-treatment steps to enhance the modified layers' properties, including stability. Post-treatment may include heating, chemical treatment, or oxidation to remove the organic polymer. [6] [7]
With SIS it is natural to apply to block co-polymer substrates. [13] [3] Block co-polymers such as polystyrene-block-poly(methyl methotrexate), PS-b-PMMA, can spontaneously undergo micro-phase separation to form a rich variety of periodic mesoscale patterns. If the SIS precursors are selected to react with just one of the BCP components but not with the second component, then the inorganic material will only nucleate and grow in that component. For instance, TMA will react with the PMMA side chains of PS-b-PMMA but not with the PS side chains. Consequently, SIS using TMA and H2O as precursor vapors to infiltrate a PS-b-PMMA micro-phase-separated substrate will form Al2O3 specifically in the PMMA-enriched micro-phase subdomains. Subsequent removal of the PS-b-PMMA by using oxygen plasma or by annealing in air will convert the combined organic and inorganic mesoscale pattern into a purely inorganic Al2O3 pattern that shares the mesoscale structure of the block copolymer but is more chemically and thermally robust.
SIS is capable of enhancing etch resistance in lithographic photo-resist, such as those used in photo-lithography, micro-fabrication, and nano-lithography. This method involves the sequential deposition of inorganic materials within a patterned resist's micro/nano-structures. By controlling the infiltration of these materials, SIS can engineer the chemical composition and density of the resist, thus enhancing its resistance to common etching processes. This allows for finer feature patterns and increased durability in micro-fabrication, which has advanced the capabilities of semiconductor manufacturing and nanotechnology applications. Another recent application for SIS in lithography is to enhance the optical absorption of the photo-resist in the extreme ultraviolet range [22] to improve EUV lithography.
SIS has applications in the field of surface coatings, particularly in the development of coatings with specific functional properties. With the sequential infiltration of different precursors into the material, SIS allows for the creation of coatings with enhanced properties and performance such as durability, corrosion resistance, eosinophilic [23] [24] ,Lipophilicity, anti-reflection, [25] and/or improved adhesion to substrates. Such an application of SIS can be used for protective coatings for metals, anti-fouling coatings for biomedical applications, and coatings for optical and electronic devices. [26] [27] [28] In this application, the diffusion and reaction of the SIS precursors below the polymer surface facilitate a bulk-like transformation such that the effective thickness of the surface coating (e.g., several microns) is much larger than the film thickness that would result using the same number of atomic layer deposition (ALD) cycles on a conventional, dense substrate (e.g., a few nanometers).
SIS, with its precise control over material properties, can be used to develop sensors and actuators. [29] [30] The functional layers created through the selective infiltration of specific precursors can enhance the sensitivity, selectivity, and response of sensors, which have applications in gas sensing, chemical sensing, biosensing, and environmental monitoring. SIS is also sued to engineer actuators with tunable properties, as it allows for the creation of devices on the micro and nano scales.
SIS has also shown promise in energy devices, especially in improving the performance and stability of energy storage and conversion systems. Employing SIS and the correct precursors, the technique can modify the surfaces and interfaces of materials used in batteries, super-capacitors, and fuel cells, enhancing charge transport, electrochemical stability, and energy density. SIS is also being explored for its applications in photovoltaics, [31] in which it can be used to engineer interfaces and increase light absorption.
SIS is a tool for surface modifications to improve bio-compatibility, bio-activity, and controlled drug release, making it useful in some biomedical applications. Polymers and radioactive macro-molecules treated with SIS can obtain coatings with developed cell adhesion and reduced bacterial adhesion, as well as provide a medium for the controlled release of therapeutics. Such properties are applicable in biomedicine, such as implantable medical devices, tissue engineering, and drug delivery systems.
Modifying the mechanical properties of proteins is an early example of SIS application. For spider dragline silk, the toughness characteristic was significantly enhanced when metallic impurities, such as titanium or aluminum, infiltrated the fibers. This fiber doping using SIS techniques attempts to mimic the effect of metallic impurities on silk properties observed in nature. [9]
One of the main challenges of SIS is the need to perform the process in an inert environment. Creation of a vacuum and/or introduction of inert gas carries costs that may be prohibitive for applications.
A second challenge lies in the inherent complexity of the diffusion-reaction process. The specifics of reactor configuration and process parameters significantly influence the final material properties, complicating process optimization, reproducibility, and scalability. While SIS is versatile and applicable to a broad range of materials, not all materials are compatible with this technique. The relatively slow diffusion rate of SIS precursor vapors through polymers can make the process time-intensive, particularly over macroscopic distances. For example, infiltrating millimeter-scale depths into a polymer may necessitate precursor exposure times of several hours. For comparison, ALD of thin films on dense surfaces that do not involve diffusion into the substrate would require exposure times of <1 s using the same precursors. [1]
Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films.
Solid-state chemistry, also sometimes referred as materials chemistry, is the study of the synthesis, structure, and properties of solid phase materials. It therefore has a strong overlap with solid-state physics, mineralogy, crystallography, ceramics, metallurgy, thermodynamics, materials science and electronics with a focus on the synthesis of novel materials and their characterization. A diverse range of synthetic techniques, such as the ceramic method and chemical vapour depostion, make solid-state materials. Solids can be classified as crystalline or amorphous on basis of the nature of order present in the arrangement of their constituent particles. Their elemental compositions, microstructures, and physical properties can be characterized through a variety of analytical methods.
A thin film is a layer of materials ranging from fractions of a nanometer (monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films is a fundamental step in many applications. A familiar example is the household mirror, which typically has a thin metal coating on the back of a sheet of glass to form a reflective interface. The process of silvering was once commonly used to produce mirrors, while more recently the metal layer is deposited using techniques such as sputtering. Advances in thin film deposition techniques during the 20th century have enabled a wide range of technological breakthroughs in areas such as magnetic recording media, electronic semiconductor devices, integrated passive devices, light-emitting diodes, optical coatings, hard coatings on cutting tools, and for both energy generation and storage. It is also being applied to pharmaceuticals, via thin-film drug delivery. A stack of thin films is called a multilayer.
A dielectric mirror, also known as a Bragg mirror, is a type of mirror composed of multiple thin layers of dielectric material, typically deposited on a substrate of glass or some other optical material. By careful choice of the type and thickness of the dielectric layers, one can design an optical coating with specified reflectivity at different wavelengths of light. Dielectric mirrors are also used to produce ultra-high reflectivity mirrors: values of 99.999% or better over a narrow range of wavelengths can be produced using special techniques. Alternatively, they can be made to reflect a broad spectrum of light, such as the entire visible range or the spectrum of the Ti-sapphire laser.
In nanotechnology, nanorods are one morphology of nanoscale objects. Each of their dimensions range from 1–100 nm. They may be synthesized from metals or semiconducting materials. Standard aspect ratios are 3-5. Nanorods are produced by direct chemical synthesis. A combination of ligands act as shape control agents and bond to different facets of the nanorod with different strengths. This allows different faces of the nanorod to grow at different rates, producing an elongated object.
Atomic layer deposition (ALD) is a thin-film deposition technique based on the sequential use of a gas-phase chemical process; it is a subclass of chemical vapour deposition. The majority of ALD reactions use two chemicals called precursors. These precursors react with the surface of a material one at a time in a sequential, self-limiting, manner. A thin film is slowly deposited through repeated exposure to separate precursors. ALD is a key process in fabricating semiconductor devices, and part of the set of tools for synthesizing nanomaterials.
Dip coating is an industrial coating process which is used, for example, to manufacture bulk products such as coated fabrics and condoms and specialised coatings for example in the biomedical field. Dip coating is also commonly used in academic research, where many chemical and nano material engineering research projects use the dip coating technique to create thin-film coatings.
Parylene is the common name of a polymer whose backbone consists of para-benzenediyl rings −C
6H
4− connected by 1,2-ethanediyl bridges −CH
2−CH
2−. It can be obtained by polymerization of para-xylyleneH
2C=C
6H
4=CH
2.
Tungsten disulfide is an inorganic chemical compound composed of tungsten and sulfur with the chemical formula WS2. This compound is part of the group of materials called the transition metal dichalcogenides. It occurs naturally as the rare mineral tungstenite. This material is a component of certain catalysts used for hydrodesulfurization and hydrodenitrification.
Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material.
Physical vapor deposition (PVD), sometimes called physical vapor transport (PVT), describes a variety of vacuum deposition methods which can be used to produce thin films and coatings on substrates including metals, ceramics, glass, and polymers. PVD is characterized by a process in which the material transitions from a condensed phase to a vapor phase and then back to a thin film condensed phase. The most common PVD processes are sputtering and evaporation. PVD is used in the manufacturing of items which require thin films for optical, mechanical, electrical, acoustic or chemical functions. Examples include semiconductor devices such as thin-film solar cells, microelectromechanical devices such as thin film bulk acoustic resonator, aluminized PET film for food packaging and balloons, and titanium nitride coated cutting tools for metalworking. Besides PVD tools for fabrication, special smaller tools used mainly for scientific purposes have been developed.
Nanomanufacturing is both the production of nanoscaled materials, which can be powders or fluids, and the manufacturing of parts "bottom up" from nanoscaled materials or "top down" in smallest steps for high precision, used in several technologies such as laser ablation, etching and others. Nanomanufacturing differs from molecular manufacturing, which is the manufacture of complex, nanoscale structures by means of nonbiological mechanosynthesis.
Zirconium diboride (ZrB2) is a highly covalent refractory ceramic material with a hexagonal crystal structure. ZrB2 is an ultra-high temperature ceramic (UHTC) with a melting point of 3246 °C. This along with its relatively low density of ~6.09 g/cm3 (measured density may be higher due to hafnium impurities) and good high temperature strength makes it a candidate for high temperature aerospace applications such as hypersonic flight or rocket propulsion systems. It is an unusual ceramic, having relatively high thermal and electrical conductivities, properties it shares with isostructural titanium diboride and hafnium diboride.
An organic solar cell (OSC) or plastic solar cell is a type of photovoltaic that uses organic electronics, a branch of electronics that deals with conductive organic polymers or small organic molecules, for light absorption and charge transport to produce electricity from sunlight by the photovoltaic effect. Most organic photovoltaic cells are polymer solar cells.
Hybrid materials are composites consisting of two constituents at the nanometer or molecular level. Commonly one of these compounds is inorganic and the other one organic in nature. Thus, they differ from traditional composites where the constituents are at the macroscopic level. Mixing at the microscopic scale leads to a more homogeneous material that either show characteristics in between the two original phases or even new properties.
Ion layer gas reaction (ILGAR®) is a non-vacuum, thin-film deposition technique developed and patented by the group of Professor Dr. Christian-Herbert Fischer at the Helmholtz-Zentrum Berlin for materials and energy in Berlin, Germany. It is a sequential and cyclic process that enables the deposition of semiconductor thin films, mainly for photovoltaic applications, specially chalcopyrite absorber layers and buffer layers. The ILGAR technique was awarded as German High Tech Champion 2011 by the Fraunhofer Society.
A perovskite solar cell (PSC) is a type of solar cell that includes a perovskite-structured compound, most commonly a hybrid organic–inorganic lead or tin halide-based material as the light-harvesting active layer. Perovskite materials, such as methylammonium lead halides and all-inorganic cesium lead halide, are cheap to produce and simple to manufacture.
Molecular layer deposition (MLD) is a vapour phase thin film deposition technique based on self-limiting surface reactions carried out in a sequential manner. Essentially, MLD resembles the well established technique of atomic layer deposition (ALD) but, whereas ALD is limited to exclusively inorganic coatings, the precursor chemistry in MLD can use small, bifunctional organic molecules as well. This enables, as well as the growth of organic layers in a process similar to polymerization, the linking of both types of building blocks together in a controlled way to build up organic-inorganic hybrid materials.
Jeffrey Elam is a Distinguished Fellow, Senior Chemist and Group Leader in the Applied Materials Division at the U.S. Department of Energy's Argonne National Laboratory. He leads Argonne's atomic layer deposition (ALD) research program, where he directs research and development and commercialization of thin film coating technologies for energy applications.
Seth B. Darling is the Chief Science & Technology Officer of the Advanced Energy Technologies Directorate at Argonne National Laboratory. He previously served as director of the Center for Molecular Engineering, a research and development organization partnered with the University of Chicago focusing on advanced materials for cleaning water, quantum information science, and polymer science. Darling is also a senior scientist at both the U.S. Department of Energy’s (DOE) Argonne National Laboratory and the University of Chicago’s Pritzker School of Molecular Engineering. He also directs the Advanced Materials for Energy-Water Systems (AMEWS) Center, a DOE Energy Frontier Research Center formed in 2018.