Soft laser desorption

Last updated

Soft laser desorption (SLD) is laser desorption of large molecules that results in ionization without fragmentation. "Soft" in the context of ion formation means forming ions without breaking chemical bonds. "Hard" ionization is the formation of ions with the breaking of bonds and the formation of fragment ions.

Contents

Background

The term "soft laser desorption" has not been widely used by the mass spectrometry community, which in most cases uses matrix-assisted laser desorption/ionization (MALDI) to indicate soft laser desorption ionization that is aided by a separate matrix compound. The term soft laser desorption was used most notably by the Nobel Foundation in public information released in conjunction with the 2002 Nobel Prize in Chemistry. [1] Koichi Tanaka was awarded 1/4 of the prize for his use of a mixture of cobalt nanoparticles and glycerol in what he called the “ultra fine metal plus liquid matrix method” of laser desorption ionization. With this approach, he was able to demonstrate the soft ionization of proteins. [2] The MALDI technique was demonstrated (and the name coined) in 1985 by Michael Karas, Doris Bachmann, and Franz Hillenkamp, [3] but ionization of proteins by MALDI was not reported until 1988, immediately after Tanaka's results were reported.

Some have argued that Karas and Hillenkamp were more deserving of the Nobel Prize than Tanaka because their crystalline matrix method is much more widely used than Tanaka's liquid matrix. [4] [5] Countering this argument is the fact that Tanaka was the first to use a 337 nm nitrogen laser while Karas and Hillenkamp were using a 266 nm Nd:YAG laser. The "modern" MALDI approach came into being several years after the first soft laser desorption of proteins was demonstrated. [6] [7] [8]

The term soft laser desorption is now used to refer to MALDI as well as "matrix free" methods for laser desorption ionization with minimal fragmentation. [9]

Variants

Graphite

The surface-assisted laser desorption/ionization (SALDI) approach uses a liquid plus graphite particle matrix. [10] [11] A colloidal graphite matrix has been called "GALDI" for colloidal graphite-assisted laser desorption/ionization. [12]

Nanostructured surfaces

The desorption ionization on silicon (DIOS) approach is laser desorption/ionization of a sample deposited on a porous silicon surface. [13] Nanostructure-initiator mass spectrometry (NIMS) is a variant of DIOS that uses "initiator" molecules trapped in the nanostructures. [14] Although nanostructures are typically formed by etching, laser etching can also be used, for example as in laser-induced silicon microcolumn arrays (LISMA) for matrix-free mass spectrometry analysis. [15]

Nanowires

A commercial NALDI target NALDI Target.jpg
A commercial NALDI target

Silicon nanowires were initially developed as a DIOS-MS application. [16] This approach was later commercialized as Nanowire-assisted laser desorption/ionization (NALDI) uses a target consisting of nanowires made from metal oxides or nitrides. [17] NALDI targets are available from Bruker Daltonics (although they are marketed as "nanostructured" rather than "nanowire" targets).

Surface-enhanced laser desorption/ionization (SELDI)

The surface-enhanced laser desorption/ionization (SELDI) variant is similar to MALDI, but uses a biochemical affinity target. [18] [19] The technique known as surface-enhanced neat desorption (SEND) [18] is a related variant of MALDI with the matrix is covalently linked to the target surface. The SELDI technology was commercialized by Ciphergen Biosystems in 1997 as the ProteinChip system. It is now produced and marketed by Bio-Rad Laboratories.

Other methods

The technique known as laser induced acoustic desorption (LIAD) is transmission geometry LDI with a metal film target. [20] [21]

Related Research Articles

<span class="mw-page-title-main">Mass spectrometry</span> Analytical technique based on determining mass to charge ratio of ions

Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a mass spectrum, a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used in many different fields and is applied to pure samples as well as complex mixtures.

<span class="mw-page-title-main">Ion source</span> Device that creates charged atoms and molecules (ions)

An ion source is a device that creates atomic and molecular ions. Ion sources are used to form ions for mass spectrometers, optical emission spectrometers, particle accelerators, ion implanters and ion engines.

<span class="mw-page-title-main">Electrospray ionization</span> Technique used in mass spectroscopy

Electrospray ionization (ESI) is a technique used in mass spectrometry to produce ions using an electrospray in which a high voltage is applied to a liquid to create an aerosol. It is especially useful in producing ions from macromolecules because it overcomes the propensity of these molecules to fragment when ionized. ESI is different from other ionization processes since it may produce multiple-charged ions, effectively extending the mass range of the analyser to accommodate the kDa-MDa orders of magnitude observed in proteins and their associated polypeptide fragments.

<span class="mw-page-title-main">Koichi Tanaka</span> Japanese electrical engineer (born 1959)

Koichi Tanaka is a Japanese electrical engineer who shared the Nobel Prize in Chemistry in 2002 for developing a novel method for mass spectrometric analyses of biological macromolecules with John Bennett Fenn and Kurt Wüthrich.

<span class="mw-page-title-main">Matrix-assisted laser desorption/ionization</span> Ionization technique

In mass spectrometry, matrix-assisted laser desorption/ionization (MALDI) is an ionization technique that uses a laser energy-absorbing matrix to create ions from large molecules with minimal fragmentation. It has been applied to the analysis of biomolecules and various organic molecules, which tend to be fragile and fragment when ionized by more conventional ionization methods. It is similar in character to electrospray ionization (ESI) in that both techniques are relatively soft ways of obtaining ions of large molecules in the gas phase, though MALDI typically produces far fewer multi-charged ions.

<span class="mw-page-title-main">History of mass spectrometry</span>

The history of mass spectrometry has its roots in physical and chemical studies regarding the nature of matter. The study of gas discharges in the mid 19th century led to the discovery of anode and cathode rays, which turned out to be positive ions and electrons. Improved capabilities in the separation of these positive ions enabled the discovery of stable isotopes of the elements. The first such discovery was with the element neon, which was shown by mass spectrometry to have at least two stable isotopes: 20Ne and 22Ne. Mass spectrometers were used in the Manhattan Project for the separation of isotopes of uranium necessary to create the atomic bomb.

Surface-enhanced laser desorption/ionization (SELDI) is a soft ionization method in mass spectrometry (MS) used for the analysis of protein mixtures. It is a variation of matrix-assisted laser desorption/ionization (MALDI). In MALDI, the sample is mixed with a matrix material and applied to a metal plate before irradiation by a laser, whereas in SELDI, proteins of interest in a sample become bound to a surface before MS analysis. The sample surface is a key component in the purification, desorption, and ionization of the sample. SELDI is typically used with time-of-flight (TOF) mass spectrometers and is used to detect proteins in tissue samples, blood, urine, or other clinical samples, however, SELDI technology can potentially be used in any application by simply modifying the sample surface.

<span class="mw-page-title-main">Gentisic acid</span> Chemical compound

Gentisic acid is a dihydroxybenzoic acid. It is a derivative of benzoic acid and a minor (1%) product of the metabolic break down of aspirin, excreted by the kidneys.

<span class="mw-page-title-main">3-Nitrobenzyl alcohol</span> Chemical compound

The compound 3-nitrobenzyl alcohol is an organic compound with the formula C7H7NO3.

<span class="mw-page-title-main">MALDI imaging</span>

MALDI mass spectrometry imaging (MALDI-MSI) is the use of matrix-assisted laser desorption ionization as a mass spectrometry imaging technique in which the sample, often a thin tissue section, is moved in two dimensions while the mass spectrum is recorded. Advantages, like measuring the distribution of a large amount of analytes at one time without destroying the sample, make it a useful method in tissue-based study.

<span class="mw-page-title-main">Protein mass spectrometry</span> Application of mass spectrometry

Protein mass spectrometry refers to the application of mass spectrometry to the study of proteins. Mass spectrometry is an important method for the accurate mass determination and characterization of proteins, and a variety of methods and instrumentations have been developed for its many uses. Its applications include the identification of proteins and their post-translational modifications, the elucidation of protein complexes, their subunits and functional interactions, as well as the global measurement of proteins in proteomics. It can also be used to localize proteins to the various organelles, and determine the interactions between different proteins as well as with membrane lipids.

<span class="mw-page-title-main">Matrix-assisted laser desorption electrospray ionization</span>

Matrix-assisted laser desorption electrospray ionization (MALDESI) was first introduced in 2006 as a novel ambient ionization technique which combines the benefits of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). An infrared (IR) or ultraviolet (UV) laser can be utilized in MALDESI to resonantly excite an endogenous or exogenous matrix. The term 'matrix' refers to any molecule that is present in large excess and absorbs the energy of the laser, thus facilitating desorption of analyte molecules. The original MALDESI design was implemented using common organic matrices, similar to those used in MALDI, along with a UV laser. The current MALDESI source employs endogenous water or a thin layer of exogenously deposited ice as the energy-absorbing matrix where O-H symmetric and asymmetric stretching bonds are resonantly excited by a mid-IR laser.

<span class="mw-page-title-main">Desorption atmospheric pressure photoionization</span>

Desorption atmospheric pressure photoionization (DAPPI) is an ambient ionization technique for mass spectrometry that uses hot solvent vapor for desorption in conjunction with photoionization. Ambient Ionization techniques allow for direct analysis of samples without pretreatment. The direct analysis technique, such as DAPPI, eliminates the extraction steps seen in most nontraditional samples. DAPPI can be used to analyze bulkier samples, such as, tablets, powders, resins, plants, and tissues. The first step of this technique utilizes a jet of hot solvent vapor. The hot jet thermally desorbs the sample from a surface. The vaporized sample is then ionized by the vacuum ultraviolet light and consequently sampled into a mass spectrometer. DAPPI can detect a range of both polar and non-polar compounds, but is most sensitive when analyzing neutral or non-polar compounds. This technique also offers a selective and soft ionization for highly conjugated compounds.

<span class="mw-page-title-main">Ambient ionization</span>

Ambient ionization is a form of ionization in which ions are formed in an ion source outside the mass spectrometer without sample preparation or separation. Ions can be formed by extraction into charged electrospray droplets, thermally desorbed and ionized by chemical ionization, or laser desorbed or ablated and post-ionized before they enter the mass spectrometer.

<span class="mw-page-title-main">Franz Hillenkamp</span> German chemist (1936–2014)

Franz Hillenkamp was a German scientist known for his development of the laser microprobe mass analyzer and, with Michael Karas, matrix-assisted laser desorption/ionization (MALDI).

<span class="mw-page-title-main">Surface-assisted laser desorption/ionization</span>

Surface-assisted laser desorption/ionization (SALDI) is a soft laser desorption technique used for mass spectrometry analysis of biomolecules, polymers, and small organic molecules. In its first embodiment Koichi Tanaka used a cobalt/glycerol liquid matrix and subsequent applications included a graphite/glycerol liquid matrix as well as a solid surface of porous silicon. The porous silicon represents the first matrix-free SALDI surface analysis allowing for facile detection of intact molecular ions, these porous silicon surfaces also facilitated the analysis of small molecules at the yoctomole level. At present laser desorption/ionization methods using other inorganic matrices such as nanomaterials are often regarded as SALDI variants. As an example, silicon nanowires as well as Titania nanotube arrays (NTA) have been used as substrates to detect small molecules. SALDI is used to detect proteins and protein-protein complexes. A related method named "ambient SALDI" - which is a combination of conventional SALDI with ambient mass spectrometry incorporating the direct analysis real time (DART) ion source has also been demonstrated. SALDI is considered one of the most important techniques in MS and has many applications.

<span class="mw-page-title-main">Robert J. Cotter</span>

Robert J. Cotter was an American chemist and mass spectrometrist. His research contributed to many early advances in the field of time-of-flight mass spectrometry. From 1998 to 2000 he was president of the American Society for Mass Spectrometry. Cotter was also a co-investigator on the Mars Organic Molecule Analyzer (MOMA) project, developing a miniaturized, low power consumption ion trap/time-of-flight mass spectrometer that was to be deployed with the ExoMars rover, now the Rosalind Franklin rover.

<span class="mw-page-title-main">Desorption/ionization on silicon</span> Soft laser desorption method

Desorption/ionization on silicon (DIOS) is a soft laser desorption method used to generate gas-phase ions for mass spectrometry analysis. DIOS is considered the first surface-based surface-assisted laser desorption/ionization (SALDI-MS) approach. Prior approaches were accomplished using nanoparticles in a matrix of glycerol, while DIOS is a matrix-free technique in which a sample is deposited on a nanostructured surface and the sample desorbed directly from the nanostructured surface through the adsorption of laser light energy. DIOS has been used to analyze organic molecules, metabolites, biomolecules and peptides, and, ultimately, to image tissues and cells.

In mass spectrometry, a matrix is a compound that promotes the formation of ions. Matrix compounds are used in matrix-assisted laser desorption/ionization (MALDI), matrix-assisted ionization (MAI), and fast atom bombardment (FAB).

References

  1. "The Nobel Prize in Chemistry 2002". The Nobel Foundation. 9 October 2002. Retrieved 2013-01-31.
  2. Tanaka, Koichi; Hiroaki Waki; Yutaka Ido; Satoshi Akita; Yoshikazu Yoshida; Tamio Yoshida; T. Matsuo (1988). "Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry". Rapid Communications in Mass Spectrometry . 2 (8): 151–153. Bibcode:1988RCMS....2..151T. doi:10.1002/rcm.1290020802.
  3. Karas, M.; Bachmann, D.; Hillenkamp, F. (1985). "Influence of the Wavelength in High-Irradiance Ultraviolet Laser Desorption Mass Spectrometry of Organic Molecules". Anal. Chem. 57 (14): 2935–9. doi:10.1021/ac00291a042.
  4. Spinney, Laura (December 11, 2002). "Nobel Prize controversy". The Scientist. Archived from the original on May 17, 2007. Retrieved 2007-08-29.
  5. "ABC News Online: 2002 Nobel chemistry choice sparks protest". B.U. Bridge. Boston University. December 2002. Retrieved 2007-08-29.
  6. Beavis RC, Chait BT (1989). "Matrix-assisted laser-desorption mass spectrometry using 355 nm radiation". Rapid Commun. Mass Spectrom. 3 (12): 436–9. Bibcode:1989RCMS....3..436B. doi:10.1002/rcm.1290031208. PMID   2520224.
  7. Beavis RC, Chait BT (1989). "Cinnamic acid derivatives as matrices for ultraviolet laser desorption mass spectrometry of proteins". Rapid Commun. Mass Spectrom. 3 (12): 432–5. Bibcode:1989RCMS....3..432B. doi:10.1002/rcm.1290031207. PMID   2520223.
  8. Strupat K, Karas M, Hillenkamp F; Karas; Hillenkamp (1991). "2,5-Dihidroxybenzoic acid: a new matrix for laser desorption-ionization mass spectrometry". Int. J. Mass Spectrom. Ion Process. 72 (111): 89–102. Bibcode:1991IJMSI.111...89S. doi:10.1016/0168-1176(91)85050-V.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. Vertes, Akos (2007). "Soft Laser Desorption Ionization — Maldi, Dios and Nanostructures". Laser Ablation and its Applications. Springer Series in Optical Sciences. Vol. 129. pp. 505–528. doi:10.1007/978-0-387-30453-3_20. ISBN   978-0-387-30452-6.
  10. Sunner, J.; Dratz, E.; Chen, Y.-C. (1995). "Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions". Anal. Chem. 67 (23): 4335–42. doi:10.1021/ac00119a021. PMID   8633776.
  11. Dale, Michael J.; Knochenmuss, Richard; Zenobi, Renato (1996). "Graphite/Liquid Mixed Matrices for Laser Desorption/Ionization Mass Spectrometry". Analytical Chemistry. 68 (19): 3321–9. doi:10.1021/ac960558i. PMID   21619267.
  12. Cha, Sangwon; Yeung, Edward S. (2007). "Colloidal Graphite-Assisted Laser Desorption/Ionization Mass Spectrometry and MSnof Small Molecules. 1. Imaging of Cerebrosides Directly from Rat Brain Tissue". Analytical Chemistry. 79 (6): 2373–85. doi:10.1021/ac062251h. PMID   17288467.
  13. Wei, J.; Buriak, J. M.; Siuzdak, G. (1999). "Desorption-ionization mass spectrometry on porous silicon". Nature. 399 (6733): 243–246. Bibcode:1999Natur.399..243W. doi:10.1038/20400. PMID   10353246. S2CID   4314372.
  14. Northen, Trent R.; Yanes, Oscar; Northen, Michael T.; Marrinucci, Dena; Uritboonthai, Winnie; Apon, Junefredo; Golledge, Stephen L.; Nordström, Anders; Siuzdak, Gary (2007). "Clathrate nanostructures for mass spectrometry". Nature. 449 (7165): 1033–6. Bibcode:2007Natur.449.1033N. doi:10.1038/nature06195. PMID   17960240. S2CID   4404703.
  15. Chen, Yong; Vertes, Akos (2006). "Adjustable Fragmentation in Laser Desorption/Ionization from Laser-Induced Silicon Microcolumn Arrays". Analytical Chemistry. 78 (16): 5835–44. doi:10.1021/ac060405n. PMID   16906730.
  16. Go EP, Apon JV, Luo G, Saghatelian A, Daniels RH, Sahi V, Dubrow R, Cravatt BF, Vertes A, Siuzdak G (March 2005). "Desorption/ionization on silicon nanowires". Anal Chem. 77 (6): 1641–6. doi:10.1021/ac048460o. PMID   15762567.
  17. Kang, Min-Jung; Pyun, Jae-Chul; Lee, Jung-Chul; Choi, Young-Jin; Park, Jae-Hwan; Park, Jae-Gwan; Lee, June-Gunn; Choi, Heon-Jin (2005). "Nanowire-assisted laser desorption and ionization mass spectrometry for quantitative analysis of small molecules". Rapid Communications in Mass Spectrometry. 19 (21): 3166–3170. Bibcode:2005RCMS...19.3166K. doi:10.1002/rcm.2187.
  18. 1 2 Hutchens, T. W.; Yip, T. T. (1993). "New desorption strategies for the mass spectrometric analysis of macromolecules". Rapid Commun. Mass Spectrom. 7 (7): 576–580. Bibcode:1993RCMS....7..576H. doi:10.1002/rcm.1290070703.
  19. Poon TC (2007). "Opportunities and limitations of SELDI-TOF-MS in biomedical research: practical advices". Expert Review of Proteomics. 4 (1): 51–65. doi:10.1586/14789450.4.1.51. PMID   17288515. S2CID   30115034.
  20. Golovlev, V. V.; Allman, S. L.; Garrett, W. R.; Taranenko, N. I.; Chen, C. H. (December 1997). "Laser-induced acoustic desorption". International Journal of Mass Spectrometry and Ion Processes. 169–170: 69–78. Bibcode:1997IJMSI.169...69G. doi:10.1016/S0168-1176(97)00209-7.
  21. Somuramasami J, Kenttämaa HI (2007). "Evaluation of a Novel Approach for Peptide Sequencing: Laser-induced Acoustic Desorption Combined with Chemical Ionization and Collision-activated Dissociation in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer". J. Am. Soc. Mass Spectrom. 18 (3): 525–40. doi:10.1016/j.jasms.2006.10.009. PMC   1945181 . PMID   17157527.