Spilocaea oleaginea

Last updated

Spilocaea oleaginea
Spilocaea oleagina.jpg
Scientific classification
Kingdom:
Phylum:
Class:
Subclass:
Order:
Family:
Genus:
Species:
S. oleaginea
Binomial name
Spilocaea oleaginea
(Castagne) S. Hughes

Spilocaea oleaginea is a deuteromycete fungal plant pathogen, the cause of the disease olive peacock spot, also known as olive leaf spot and bird's eye spot. This plant disease commonly affects the leaves of olive trees worldwide. The disease affects trees throughout the growing season and can cause significant losses in yield. The disease causes blemishes on the fruit, delays ripening, and reduces the yield of oil. [1] Defoliation and in severe cases, twig death, can occur, and the disease can have long-term health effects on the trees.

Contents

Hosts

Olive plants are the only known host of the pathogen, which is able to infect all olive cultivars, although different cultivars vary in their susceptibility. [1] Young leaves are more likely to develop greater symptoms than intermediate or old leaves. [2]

Symptoms

In late spring, dark spots appear on the upper surface of leaf cuticles in the low canopy. [3] These spots are lesions produced by the infecting fungus, and later are the site of sporulation. [4] Symptoms may also appear on the stem and fruit, but are most common on the leaf surface. [5] As the season progresses, the dark spots grow to a size of between 0.1 and 0.5 inches (0.25 and 1.27 cm) in diameter, with the emergence of a yellow halo around each spot. [1] Plants may experience defoliation and in severe cases twig death. Blooms may also fail, resulting in significant reductions to crop production. [5]

Cerocospora leaf spot may appear in tandem with the development of peacock spot, as grey or ashy fungus signs, due to conidia on the bottom of leaves. [6]

Disease cycle

Spilocaea oleagina is a Deuteromycete because it has no known sexual stage. [7] If the sexual stage exists and is discovered, it will belong to the genus Venturia . [7] The mycelium typically develops on the leaf tissue. Lesions can be seen on the upper surface of leaves. [8] The reproductive spores of Olive Peacock Spot that are known to exist are conidia. [8] The disease is spread in several ways. The conidia can be spread by insects and the wind, and locally through rain water. [8] The insect suspected of spreading Olive Peacock Spot is Ectopsocus briggsi , which is in the same order as lice. [9] Olive trees keep their leaves year round. The primary infection occurs in the fall. [10] The mycelia in leaf lesions infect the surrounding tissue and produce conidia for the primary infection. [10] Sporulation from the leaf lesions spreads the conidia to healthy plant tissue. [8] Young leaves are more susceptible to infection than older leaves. [10] Sporulation continues during the winter and into the spring. The pathogen goes dormant during the hot, dry summer and survives as mycelium. [10] The mycelia go dormant inside lesions on living leaves. [10] Leaves that have dropped to the ground have also been known to produce infection from lesions, but this is not usually a significant source of infection. [8]

Environment

Olive peacock spot disease is a worldwide agricultural problem and it thrives in similar conditions wherever it occurs. It depends on mild to low temperatures and free moisture to germinate and so it usually infects in the fall, winter, and spring. Hot and dry conditions in the summer cause the fungus to become inactivated and the leaf spots to turn white and crusted. [11] During the summer, the diseased leaves fall leaving only the healthy ones on the partially defoliated trees. This provides a natural control for the disease. [5] The disease also mainly infects young leaves in the spring. [2]

The presence of free moisture on the leaves is crucial for the conidia to germinate. This can occur in as little as 9 hours in the optimum temperature range, and usually in no more than 24 hours. Without free moisture, the conidia will not germinate. [2] The preferred temperature range is 58–75 °F (14–24 °C), however it can persist between 35–80 °F (2–27 °C). [3]

Landscape can also affect the spread of olive peacock spot disease. It thrives in low-lying areas or in environments that receive little sunlight or have a closed tree canopy. Fog, dew, and high humidity are important factors. Under these conditions, this disease can spread even in summer. [3]

Nutrient deficiencies or imbalances in the soil have been linked to increased susceptibility. An excess of nitrogen and a calcium deficiency may weaken an olive tree's defenses. However, attempts to fix this with foliar nutrients and compost tea have not proven effective. [3]

Management

Current practices in managing olive peacock spot disease aim for consistent suppression by keeping the levels of inoculum low through preventative measures. That is because there is no way to treat the disease once it appears in the spring or while the trees have fruit. The most common management approach is to spray the foliage with a copper compound after the fruit has been harvested in the fall, and again in the late winter if the environment is extremely wet. A power sprayer with high pressure is the most effective because it helps coat the entire surface of each leaf, even in the interior of the tree. If copper is sprayed on the fruit it is nearly impossible to wash away, so late harvests are often lost to infection. The spray comes in various forms of copper hydroxide, copper oxychloride, tribasic copper sulfate, and copper oxide. A few of those have been legally classified as organic. [3]

There are other commercially available fungicides that don't contain copper, such as "Spotless", which is applied monthly as a foliar spray between harvesting and flowering. [5]

No olive varieties are completely resistant to the fungus, but susceptibility varies among cultivars. [5] Partially-resistant varieties have been found to have genetic markers that can be used to select for resistant progeny. [12] Information is usually listed in descriptions of varieties provided by the growers.

Importance

Losses of 10 to 20 percent of fruiting wood have been observed in plants highly infected with olive peacock spot. While the disease is not highly detrimental, it can cause chronic problems and severe economic losses in some olive orchards. [4] These losses are significant in an industry that occupies 8.5 million hectares. [13] [ full citation needed ]

Related Research Articles

<span class="mw-page-title-main">Black sigatoka</span> Pathogenic fungus

Black sigatoka is a leaf-spot disease of banana plants caused by the ascomycete fungus Mycosphaerella fijiensis (Morelet), also known as black leaf streak. It was discovered in 1963 and named for its similarities with yellow Sigatoka, which is caused by Mycosphaerella musicola (Mulder), which was itself named after the Sigatoka Valley in Fiji. In the same valley an outbreak of this disease reached epidemic proportions from 1912 to 1923.

<span class="mw-page-title-main">Apple scab</span> Plant disease caused by fungus

Apple scab is a common disease of plants in the rose family (Rosaceae) that is caused by the ascomycete fungus Venturia inaequalis. While this disease affects several plant genera, including Sorbus, Cotoneaster, and Pyrus, it is most commonly associated with the infection of Malus trees, including species of flowering crabapple, as well as cultivated apple. The first symptoms of this disease are found in the foliage, blossoms, and developing fruits of affected trees, which develop dark, irregularly-shaped lesions upon infection. Although apple scab rarely kills its host, infection typically leads to fruit deformation and premature leaf and fruit drop, which enhance the susceptibility of the host plant to abiotic stress and secondary infection. The reduction of fruit quality and yield may result in crop losses of up to 70%, posing a significant threat to the profitability of apple producers. To reduce scab-related yield losses, growers often combine preventive practices, including sanitation and resistance breeding, with reactive measures, such as targeted fungicide or biocontrol treatments, to prevent the incidence and spread of apple scab in their crops.

<span class="mw-page-title-main">Black rot (grape disease)</span> Species of fungus

Grape black rot is a fungal disease caused by an ascomycetous fungus, Guignardia bidwellii, that attacks grape vines during hot and humid weather. “Grape black rot originated in eastern North America, but now occurs in portions of Europe, South America, and Asia. It can cause complete crop loss in warm, humid climates, but is virtually unknown in regions with arid summers.” The name comes from the black fringe that borders growing brown patches on the leaves. The disease also attacks other parts of the plant, “all green parts of the vine: the shoots, leaf and fruit stems, tendrils, and fruit. The most damaging effect is to the fruit”.

<i>Diplocarpon rosae</i> Species of fungus

Diplocarpon rosae is a fungus that creates the rose black spot disease. Because it was observed by people of various countries around the same time, the nomenclature for the fungus varied with about 25 different names. The asexual stage is now known to be Marssonina rosae, while the sexual and most common stage is known as Diplocarpon rosae.

<i>Venturia inaequalis</i> Species of fungus

Venturia inaequalis is an ascomycete fungus that causes the apple scab disease.

<i>Alternaria alternata</i> Pathogenic fungus

Alternaria alternata is a fungus causing leaf spots, rots, and blights on many plant parts, and other diseases. It is an opportunistic pathogen on over 380 host species of plant.

Alternaria triticina is a fungal plant pathogen that causes leaf blight on wheat. A. triticina is responsible for the largest leaf blight issue in wheat and also causes disease in other major cereal grain crops. It was first identified in India in 1962 and still causes significant yield loss to wheat crops on the Indian subcontinent. The disease is caused by a fungal pathogen and causes necrotic leaf lesions and in severe cases shriveling of the leaves.

<i>Mycosphaerella coffeicola</i> Species of fungus

Mycosphaerella coffeicola is a sexually reproducing fungal plant pathogen. It is most commonly referred to as the asexual organism Cercospora coffeicola.

<i>Diplocarpon earlianum</i> Species of fungus

Diplocarpon earlianum is a species of fungus that causes disease in strawberry plants called strawberry leaf scorch. The disease overwinters in plant debris and infects strawberry plants during the spring season when it is wet. The five main methods to reduce strawberry leaf scorch include: irrigation techniques, crop rotation, planting resistant and disease-free seeds, fungicide use, and sanitation measures. Control of strawberry leaf scorch is important because it is responsible for the majority of disease in strawberries. Diplocarpon earliana affects the fruit quality and yield of the strawberry crop. Losses range from negligible to severe depending on numerous epidemiological factors including cultivar susceptibility, type of cropping system, and weather conditions

<i>Alternaria solani</i> Species of fungus

Alternaria solani is a fungal pathogen that produces a disease in tomato and potato plants called early blight. The pathogen produces distinctive "bullseye" patterned leaf spots and can also cause stem lesions and fruit rot on tomato and tuber blight on potato. Despite the name "early," foliar symptoms usually occur on older leaves. If uncontrolled, early blight can cause significant yield reductions. Primary methods of controlling this disease include preventing long periods of wetness on leaf surfaces and applying fungicides. Early blight can also be caused by Alternaria tomatophila, which is more virulent on stems and leaves of tomato plants than Alternaria solani.

Elsinoë mangiferae, common name "mango scab", is also known Denticularia mangiferae or Sphaceloma mangiferae (anamorph). It is an ascomycete plant pathogen native to tropical regions and specific for survival on only one host, the mango. Originally described in 1943 from Florida and Cuba specimens, this pathogen has since spread worldwide and is becoming a pathogen of great concern for the mango industries in Australia and India. The species was first described formally in 1946.

<i>Elsinoë ampelina</i> Species of fungus

Elsinoë ampelina is a plant pathogen, which is the causal agent of anthracnose on grape.

Alternaria helianthi is a fungal plant pathogen causing a disease in sunflowers known as Alternaria blight of sunflower.

<i>Cercospora melongenae</i> Fungal disease of eggplant leaves

Cercospora melongenae is a fungal plant pathogen that causes leaf spot on eggplant. It is a deuteromycete fungus that is primarily confined to eggplant species. Some other host species are Solanum aethiopicum and Solanum incanum. This plant pathogen only attacks leaves of eggplants and not the fruit. It is fairly common among the fungi that infect community gardens and home gardens of eggplant. Generally speaking, Cercospora melongenae attacks all local varieties of eggplants, but is most severe on the Philippine eggplant and less parasitic on a Siamese variety.

<i>Rhytisma acerinum</i> Species of fungus

Rhytisma acerinum is a plant pathogen that commonly affects sycamores and maples in late summer and autumn, causing tar spot. Tar spot does not usually have an adverse effect on the trees' long-term health. R. acerinum is an Ascomycete fungus that locally infects the leaves of trees and is a biotrophic parasite. The disease is cosmetic and is therefore usually controlled only with sanitation methods.

This article summarizes different crops, what common fungal problems they have, and how fungicide should be used in order to mitigate damage and crop loss. This page also covers how specific fungal infections affect crops present in the United States.

<span class="mw-page-title-main">Peach scab</span> Fungal disease of stone fruits

Peach scab, also known as peach freckles, is a disease of stone fruits caused by the fungi Cladosporium carpophilum. The disease is most prevalent in wet and warm areas especially southern part of the U.S. as the fungi require rain and wind for dispersal. The fungus causes scabbing, lesions, and defoliating on twig, fruit, and leaf resulting in downgrade of peach quality or loss of fruits due to rotting in severe cases.

<span class="mw-page-title-main">Cherry leaf spot</span> Plant fungal disease

Cherry leaf spot is a fungal disease which infects cherries and plums. Sweet, sour, and ornamental cherries are susceptible to the disease, being most prevalent in sour cherries. The variety of sour cherries that is the most susceptible are the English morello cherries. This is considered a serious disease in the Midwest, New England states, and Canada. It has also been estimated to infect 80 percent of orchards in the Eastern states. It must be controlled yearly to avoid a significant loss of the crop. If not controlled properly, the disease can dramatically reduce yields by nearly 100 percent. The disease is also known as yellow leaf or shothole disease to cherry growers due to the characteristic yellowing leaves and shot holes present in the leaves upon severe infection.

<span class="mw-page-title-main">Northern corn leaf blight</span> Fungal disease of maize plants

Northern corn leaf blight (NCLB) or Turcicum leaf blight (TLB) is a foliar disease of corn (maize) caused by Exserohilum turcicum, the anamorph of the ascomycete Setosphaeria turcica. With its characteristic cigar-shaped lesions, this disease can cause significant yield loss in susceptible corn hybrids.

<span class="mw-page-title-main">Alternaria leaf spot</span> Fungal plant disease

Alternaria leaf spot or Alternaria leaf blight are a group of fungal diseases in plants, that have a variety of hosts. The diseases infects common garden plants, such as cabbage, and are caused by several closely related species of fungi. Some of these fungal species target specific plants, while others have been known to target plant families. One commercially relevant plant genus that can be affected by Alternaria Leaf Spot is Brassica, as the cosmetic issues caused by symptomatic lesions can lead to rejection of crops by distributors and buyers. When certain crops such as cauliflower and broccoli are infected, the heads deteriorate and there is a complete loss of marketability. Secondary soft-rotting organisms can infect stored cabbage that has been affected by Alternaria Leaf Spot by entering through symptomatic lesions. Alternaria Leaf Spot diseases that affect Brassica species are caused by the pathogens Alternaria brassicae and Alternaria brassicicola.

References

  1. 1 2 3 Obanor, Friday O.; Walter, Monika; Jones, E. Eirian; Jaspers, Marlene V. (2008). "Effect of temperature, relative humidity, leaf wetness and leaf age on Spilocaea oleagina conidium germination on olive leaves". European Journal of Plant Pathology. 120 (3): 211–222. Bibcode:2008EJPP..120..211O. doi:10.1007/s10658-007-9209-6. ISSN   0929-1873. S2CID   6801014.
  2. 1 2 3 "Disease Control." The Olive Oil Source. N.p., n.d. Web. 23 Oct. 2013.[ full citation needed ]
  3. 1 2 3 4 5 Vossen, Paul. Peacock Spot and Cerospora Foliar Diseases on Olive. California: UC Cooperative Extension, n.d. PDF.
  4. 1 2 Teviotdale, Beth L.; Sibbett, G. Steven (1995). "Consistent annual treatment helps future olive leaf spot control" (PDF). California Agriculture. 49 (5): 27–32. doi: 10.3733/ca.v049n05p27 . ISSN   0008-0845.
  5. 1 2 3 4 5 Ferguson, et al. "How to Manage Pests." UC IPM: UC Management Guidelines for Peacock Spot on Olive. N.p., n.d. Web. 23 Oct. 2013.
  6. "Pests and diseases". McevoyRanch.com.
  7. 1 2 González-Lamothe, Rocío; Segura, Rosa; Trapero, Antonio; Baldoni, Luciana; Botella, Miguel A; Valpuesta, Victoriano (2002). "Phylogeny of the fungus Spilocaea oleagina, the causal agent of peacock leaf spot in olive". FEMS Microbiology Letters. 210 (1): 149–155. doi: 10.1111/j.1574-6968.2002.tb11174.x . ISSN   0378-1097. PMID   12023092.
  8. 1 2 3 4 5 Obanor, Friday O.; Walter, Monika; Jones, E. Eirian; Candy, Judith; Jaspers, Marlene V. (2010). "Genetic variation in Spilocaea oleagina populations from New Zealand olive groves". Australasian Plant Pathology. 39 (6): 508. Bibcode:2010AuPP...39..508O. doi:10.1071/AP10013. ISSN   0815-3191. S2CID   23529963.
  9. Marzo, L.; Frisullo, S.; Lops, F.; Rossi, V. (1993). "Possible dissemination of Spilocaea oleagina conidia by insects (Ectopsocus briggsi)". EPPO Bulletin. 23 (3): 389–391. doi:10.1111/j.1365-2338.1993.tb01341.x. ISSN   0250-8052.
  10. 1 2 3 4 5 Obanor, Friday O.; Jaspers, Marlene V.; Jones, E. Eirian; Walter, Monika (2008). "Greenhouse and field evaluation of fungicides for control of olive leaf spot in New Zealand". Crop Protection. 27 (10): 1335–1342. Bibcode:2008CrPro..27.1335O. doi:10.1016/j.cropro.2008.04.007. ISSN   0261-2194.
  11. "Olivera: Olive Diseases - Peacock Spot". Archived from the original on July 18, 2013. Retrieved December 1, 2013.
  12. Mekuria, Genet., et al. "Identification of Genetic Markers in Olive Linked to Olive Leaf Spot Resistance and Susceptibility". J. Amer. Soc. Horticultural Science126.3 (2001):305-308.
  13. "FAO, 2004". Apps3.fao.org. Retrieved 2009-05-18.