Steps and skips

Last updated
Major second on C.svg
Major third on C.png
Skip: Major third. Play
A chorale melody containing only steps, no skips: "Jesu, Leiden, Pein, und Tod". Play Chorale - Jesu, Leiden, Pein, un Tod - all steps.png
A chorale melody containing only steps, no skips: "Jesu, Leiden, Pein, und Tod". Play

In music, a step, or conjunct motion, [1] is the difference in pitch between two consecutive notes of a musical scale. In other words, it is the interval between two consecutive scale degrees. Any larger interval is called a skip (also called a leap), or disjunct motion. [1]

Contents

In the diatonic scale, a step is either a minor second (sometimes also called half step) or a major second (sometimes also called whole step), with all intervals of a minor third or larger being skips. For example, C to D (major second) is a step, whereas C to E (major third) is a skip.

More generally, a step is a smaller or narrower interval in a musical line, and a skip is a wider or larger interval with the categorization of intervals into steps and skips is determined by the tuning system and the pitch space used.

Melodic motion in which the interval between any two consecutive pitches is no more than a step, or, less strictly, where skips are rare, is called stepwise or conjunct melodic motion, as opposed to skipwise or disjunct melodic motion, characterized by frequent skips.

Half steps

In the major scale or any of its modes, a step will always be a movement of 1 or 2 semitones, and a skip a movement of 3 or more semitones.

In other scales an augmented second—an incomposite step equivalent to 3 semitones—and/or a diminished third—a skip of 2 semitones—may be possible.

Melody

"Pop Goes the Weasel" melody is primarily steps. Play Pop Goes the Weasel melody.PNG
"Pop Goes the Weasel" melody is primarily steps. Play
Webern's Variations for orchestra (1940), op. 30 (pp.23-24) melody is primarily skips. Play Webern Variations melody.png
Webern's Variations for orchestra (1940), op. 30 (pp.23–24) melody is primarily skips. Play

Melody may be characterized by its degree and type of conjunct and disjunct motion. For example, Medieval plainchant melodies are generally characterized by conjunct motion with occasional thirds, fourths, and generally ascending fifths while larger intervals are quite rare though octave leaps may occur between two separate phrases. [4] Renaissance melodies are generally characterized by conjunct motion, with only occasional leaps of more than a fifth and then rarely anything but a sixth or octave. [1] In contrast, melody in the 20th century varied greatly including the diatonic idiom of the 18th century (Classical), the variety of idioms from the 19th century (Romantic), and newer nondiatonic scales in the 20th century. [5] Some of these later idioms included many or predominantly leaps.

See also

Related Research Articles

In music theory, a diatonic scale is any heptatonic scale that includes five whole steps and two half steps (semitones) in each octave, in which the two half steps are separated from each other by either two or three whole steps, depending on their position in the scale. This pattern ensures that, in a diatonic scale spanning more than one octave, all the half steps are maximally separated from each other.

<span class="mw-page-title-main">Melody</span> Linear succession of tones in the foreground of a musical work

A melody, also tune, voice, or line, is a linear succession of musical tones that the listener perceives as a single entity. In its most literal sense, a melody is a combination of pitch and rhythm, while more figuratively, the term can include other musical elements such as tonal color. It is the foreground to the background accompaniment. A line or part need not be a foreground melody.

In music theory, a scale is "any consecutive series of notes that form a progression between one note and its octave", typically by order of pitch or fundamental frequency.

In music theory, an interval is a difference in pitch between two sounds. An interval may be described as horizontal, linear, or melodic if it refers to successively sounding tones, such as two adjacent pitches in a melody, and vertical or harmonic if it pertains to simultaneously sounding tones, such as in a chord.

<span class="mw-page-title-main">Chromatic scale</span> Musical scale set of twelve pitches

The chromatic scale is a set of twelve pitches used in tonal music, with notes separated by the interval of a semitone. Chromatic instruments, such as the piano, are made to produce the chromatic scale, while other instruments capable of continuously variable pitch, such as the trombone and violin, can also produce microtones, or notes between those available on a piano.

In music theory, the tritone is defined as a musical interval spanning three adjacent whole tones. For instance, the interval from F up to the B above it is a tritone as it can be decomposed into the three adjacent whole tones F–G, G–A, and A–B.

In music theory, a tetrachord is a series of four notes separated by three intervals. In traditional music theory, a tetrachord always spanned the interval of a perfect fourth, a 4:3 frequency proportion —but in modern use it means any four-note segment of a scale or tone row, not necessarily related to a particular tuning system.

In music, two written notes have enharmonic equivalence if they produce the same pitch but are notated differently. Similarly, written intervals, chords, or key signatures are considered enharmonic if they represent identical pitches that are notated differently. The term derives from Latin enharmonicus, in turn from Late Latin enarmonius, from Ancient Greek ἐναρμόνιος, from ἐν ('in') and ἁρμονία ('harmony').

<span class="mw-page-title-main">Semitone</span> Musical interval

A semitone, also called a minor second, half step, or a half tone, is the smallest musical interval commonly used in Western tonal music, and it is considered the most dissonant when sounded harmonically. It is defined as the interval between two adjacent notes in a 12-tone scale, visually seen on a keyboard as the distance between two keys that are adjacent to each other. For example, C is adjacent to C; the interval between them is a semitone.

In European art music, the common practice period was the period of about 250 years during which the tonal system was regarded as the only basis for composition. It began when composers' use of the tonal system had clearly superseded earlier systems, and ended when some composers began using significantly modified versions of the tonal system, and began developing other systems as well. Most features of common practice persisted from the mid-Baroque period through the Classical and Romantic periods, roughly from 1650 to 1900. There was much stylistic evolution during these centuries, with patterns and conventions flourishing and then declining, such as the sonata form. The most prominent unifying feature throughout the period is a harmonic language to which music theorists can today apply Roman numeral chord analysis; however, the "common" in common practice does not directly refer to any type of harmony, rather it refers to the fact that for over two hundred years only one system was used.

Chromaticism is a compositional technique interspersing the primary diatonic pitches and chords with other pitches of the chromatic scale. In simple terms, within each octave, diatonic music uses only seven different notes, rather than the twelve available on a standard piano keyboard. Music is chromatic when it uses more than just these seven notes.

<span class="mw-page-title-main">Pitch space</span> Model for relationships between pitches

In music theory, pitch spaces model relationships between pitches. These models typically use distance to model the degree of relatedness, with closely related pitches placed near one another, and less closely related pitches farther apart. Depending on the complexity of the relationships under consideration, the models may be multidimensional. Models of pitch space are often graphs, groups, lattices, or geometrical figures such as helixes. Pitch spaces distinguish octave-related pitches. When octave-related pitches are not distinguished, we have instead pitch class spaces, which represent relationships between pitch classes. Chordal spaces model relationships between chords.

In the musical system of ancient Greece, genus is a term used to describe certain classes of intonations of the two movable notes within a tetrachord. The tetrachordal system was inherited by the Latin medieval theory of scales and by the modal theory of Byzantine music; it may have been one source of the later theory of the jins of Arabic music. In addition, Aristoxenus calls some patterns of rhythm "genera".

<span class="mw-page-title-main">Melodic motion</span>

Melodic motion is the quality of movement of a melody, including nearness or farness of successive pitches or notes in a melody. This may be described as conjunct or disjunct, stepwise, skipwise or no movement, respectively. See also contrapuntal motion. In a conjunct melodic motion, the melodic phrase moves in a stepwise fashion; that is the subsequent notes move up or down a semitone or tone, but no greater. In a disjunct melodic motion, the melodic phrase leaps upwards or downwards; this movement is greater than a whole tone. In popular Western music, a melodic leap of disjunct motion is often present in the chorus of a song, to distinguish it from the verses and captivate the audience.

<span class="mw-page-title-main">Heptatonic scale</span> Musical scale with seven pitches

A heptatonic scale is a musical scale that has seven pitches, or tones, per octave. Examples include:

<span class="mw-page-title-main">Consecutive fifths</span> Type of progression in music theory

In music, consecutive fifths or parallel fifths are progressions in which the interval of a perfect fifth is followed by a different perfect fifth between the same two musical parts : for example, from C to D in one part along with G to A in a higher part. Octave displacement is irrelevant to this aspect of musical grammar; for example, a parallel twelfth is equivalent to a parallel fifth.

<span class="mw-page-title-main">Rothenberg propriety</span> Concept in diatonic set theory

In diatonic set theory, Rothenberg propriety is an important concept, lack of contradiction and ambiguity, in the general theory of musical scales which was introduced by David Rothenberg in a seminal series of papers in 1978. The concept was independently discovered in a more restricted context by Gerald Balzano, who termed it coherence.

<span class="mw-page-title-main">Diatonic and chromatic</span> Terms in music theory to characterize scales

Diatonic and chromatic are terms in music theory that are used to characterize scales. The terms are also applied to musical instruments, intervals, chords, notes, musical styles, and kinds of harmony. They are very often used as a pair, especially when applied to contrasting features of the common practice music of the period 1600–1900.

<span class="mw-page-title-main">Incomposite interval</span>

An incomposite interval is a concept in the Ancient Greek theory of music concerning melodic musical intervals between neighbouring notes in a tetrachord or scale which, for that reason, do not encompass smaller intervals. Aristoxenus defines melodically incomposite intervals in the following context:

Let us assume that given a systēma, whether pyknon or non-pyknon, no interval less than the remainder of the first concord can be placed next above it, and no interval less than a tone next below it. Let us also assume that each of the notes which are melodically successive in each genus will either form with the fourth note in order from it the concord of a fourth, or will form with the fifth note from it in order the concord of a fifth, or both, and that any note of which none of these things is true is unmelodic relative to those with which it forms no concord. Let us further assume that given that there are four intervals in the fifth, of which two are usually equal and two unequal, the unequal ones are placed next to the equal ones in the opposite order above and below. Let us assume that notes standing at the same concordant interval from successive notes are in succession with one another. Let us assume that in each genus an interval is melodically incomposite if the voice, in singing a melody, cannot divide it into intervals.

Musicology commonly classifies scales as either hemitonic or anhemitonic. Hemitonic scales contain one or more semitones, while anhemitonic scales do not contain semitones. For example, in traditional Japanese music, the anhemitonic yo scale is contrasted with the hemitonic in scale. The simplest and most commonly used scale in the world is the atritonic anhemitonic "major" pentatonic scale. The whole tone scale is also anhemitonic.

References

  1. 1 2 3 Bonds, Mark Evan (2006). A History of Music in Western Culture, p.123. 2nd ed. ISBN   0-13-193104-0.
  2. Kliewer, Vernon (1975). "Melody: Linear Aspects of Twentieth-Century Music", Aspects of Twentieth-Century Music, p.270-301. Wittlich, Gary (ed.). Englewood Cliffs, New Jersey: Prentice-Hall. ISBN   0-13-049346-5.
  3. Marquis, G. Welton (1964). Twentieth Century Music Idioms, p.2. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
  4. Bonds (2006), p.43.
  5. Bonds (2006), p.540.